800 resultados para Context-aware information systems
Resumo:
Business Process Management describes a holistic management approach for the systematic design, modeling, execution, validation, monitoring and improvement of organizational business processes. Traditionally, most attention within this community has been given to control-flow aspects, i.e., the ordering and sequencing of business activities, oftentimes in isolation with regards to the context in which these activities occur. In this paper, we propose an approach that allows executable process models to be integrated with Geographic Information Systems. This approach enables process models to take geospatial and other geographic aspects into account in an explicit manner both during the modeling phase and the execution phase. We contribute a structured modeling methodology, based on the well-known Business Process Model and Notation standard, which is formalized by means of a mapping to executable Colored Petri nets. We illustrate the feasibility of our approach by means of a sustainability-focused case example of a process with important ecological concerns.
Resumo:
Portable music players have made it possible to listen to a personal collection of music in almost every situation, and they are often used during some activity to provide a stimulating audio environment. Studies have demonstrated the effects of music on the human body and mind, indicating that selecting music according to situation can, besides making the situation more enjoyable, also make humans perform better. For example, music can boost performance during physical exercises, alleviate stress and positively affect learning. We believe that people intuitively select different types of music for different situations. Based on this hypothesis, we propose a portable music player, AndroMedia, designed to provide personalised music recommendations using the user’s current context and listening habits together with other user’s situational listening patterns. We have developed a prototype that consists of a central server and a PDA client. The client uses Bluetooth sensors to acquire context information and logs user interaction to infer implicit user feedback. The user interface also allows the user to give explicit feedback. Large user interface elements facilitate touch-based usage in busy environments. The prototype provides the necessary framework for using the collected information together with other user’s listening history in a context- enhanced collaborative filtering algorithm to generate context-sensitive recommendations. The current implementation is limited to using traditional collaborative filtering algorithms. We outline the techniques required to create context-aware recommendations and present a survey on mobile context-aware music recommenders found in literature. As opposed to the explored systems, AndroMedia utilises other users’ listening habits when suggesting tunes, and does not require any laborious set up processes.
Resumo:
The aging population in many countries brings into focus rising healthcare costs and pressure on conventional healthcare services. Pervasive healthcare has emerged as a viable solution capable of providing a technology-driven approach to alleviate such problems by allowing healthcare to move from the hospital-centred care to self-care, mobile care, and at-home care. The state-of-the-art studies in this field, however, lack a systematic approach for providing comprehensive pervasive healthcare solutions from data collection to data interpretation and from data analysis to data delivery. In this thesis we introduce a Context-aware Real-time Assistant (CARA) architecture that integrates novel approaches with state-of-the-art technology solutions to provide a full-scale pervasive healthcare solution with the emphasis on context awareness to help maintaining the well-being of elderly people. CARA collects information about and around the individual in a home environment, and enables accurately recognition and continuously monitoring activities of daily living. It employs an innovative reasoning engine to provide accurate real-time interpretation of the context and current situation assessment. Being mindful of the use of the system for sensitive personal applications, CARA includes several mechanisms to make the sophisticated intelligent components as transparent and accountable as possible, it also includes a novel cloud-based component for more effective data analysis. To deliver the automated real-time services, CARA supports interactive video and medical sensor based remote consultation. Our proposal has been validated in three application domains that are rich in pervasive contexts and real-time scenarios: (i) Mobile-based Activity Recognition, (ii) Intelligent Healthcare Decision Support Systems and (iii) Home-based Remote Monitoring Systems.
Resumo:
A large volume of visual content is inaccessible until effective and efficient indexing and retrieval of such data is achieved. In this paper, we introduce the DREAM system, which is a knowledge-assisted semantic-driven context-aware visual information retrieval system applied in the film post production domain. We mainly focus on the automatic labelling and topic map related aspects of the framework. The use of the context- related collateral knowledge, represented by a novel probabilistic based visual keyword co-occurrence matrix, had been proven effective via the experiments conducted during system evaluation. The automatically generated semantic labels were fed into the Topic Map Engine which can automatically construct ontological networks using Topic Maps technology, which dramatically enhances the indexing and retrieval performance of the system towards an even higher semantic level.
Resumo:
The dynamicity and heterogeneity that characterize pervasive environments raise new challenges in the design of mobile middleware. Pervasive environments are characterized by a significant degree of heterogeneity, variability, and dynamicity that conventional middleware solutions are not able to adequately manage. Originally designed for use in a relatively static context, such middleware systems tend to hide low-level details to provide applications with a transparent view on the underlying execution platform. In mobile environments, however, the context is extremely dynamic and cannot be managed by a priori assumptions. Novel middleware should therefore support mobile computing applications in the task of adapting their behavior to frequent changes in the execution context, that is, it should become context-aware. In particular, this thesis has identified the following key requirements for novel context-aware middleware that existing solutions do not fulfil yet. (i) Middleware solutions should support interoperability between possibly unknown entities by providing expressive representation models that allow to describe interacting entities, their operating conditions and the surrounding world, i.e., their context, according to an unambiguous semantics. (ii) Middleware solutions should support distributed applications in the task of reconfiguring and adapting their behavior/results to ongoing context changes. (iii) Context-aware middleware support should be deployed on heterogeneous devices under variable operating conditions, such as different user needs, application requirements, available connectivity and device computational capabilities, as well as changing environmental conditions. Our main claim is that the adoption of semantic metadata to represent context information and context-dependent adaptation strategies allows to build context-aware middleware suitable for all dynamically available portable devices. Semantic metadata provide powerful knowledge representation means to model even complex context information, and allow to perform automated reasoning to infer additional and/or more complex knowledge from available context data. In addition, we suggest that, by adopting proper configuration and deployment strategies, semantic support features can be provided to differentiated users and devices according to their specific needs and current context. This thesis has investigated novel design guidelines and implementation options for semantic-based context-aware middleware solutions targeted to pervasive environments. These guidelines have been applied to different application areas within pervasive computing that would particularly benefit from the exploitation of context. Common to all applications is the key role of context in enabling mobile users to personalize applications based on their needs and current situation. The main contributions of this thesis are (i) the definition of a metadata model to represent and reason about context, (ii) the definition of a model for the design and development of context-aware middleware based on semantic metadata, (iii) the design of three novel middleware architectures and the development of a prototypal implementation for each of these architectures, and (iv) the proposal of a viable approach to portability issues raised by the adoption of semantic support services in pervasive applications.
Resumo:
This thesis deals with Context Aware Services, Smart Environments, Context Management and solutions for Devices and Service Interoperability. Multi-vendor devices offer an increasing number of services and end-user applications that base their value on the ability to exploit the information originating from the surrounding environment by means of an increasing number of embedded sensors, e.g. GPS, compass, RFID readers, cameras and so on. However, usually such devices are not able to exchange information because of the lack of a shared data storage and common information exchange methods. A large number of standards and domain specific building blocks are available and are heavily used in today's products. However, the use of these solutions based on ready-to-use modules is not without problems. The integration and cooperation of different kinds of modules can be daunting because of growing complexity and dependency. In this scenarios it might be interesting to have an infrastructure that makes the coexistence of multi-vendor devices easy, while enabling low cost development and smooth access to services. This sort of technologies glue should reduce both software and hardware integration costs by removing the trouble of interoperability. The result should also lead to faster and simplified design, development and, deployment of cross-domain applications. This thesis is mainly focused on SW architectures supporting context aware service providers especially on the following subjects: - user preferences service adaptation - context management - content management - information interoperability - multivendor device interoperability - communication and connectivity interoperability Experimental activities were carried out in several domains including Cultural Heritage, indoor and personal smart spaces – all of which are considered significant test-beds in Context Aware Computing. The work evolved within european and national projects: on the europen side, I carried out my research activity within EPOCH, the FP6 Network of Excellence on “Processing Open Cultural Heritage” and within SOFIA, a project of the ARTEMIS JU on embedded systems. I worked in cooperation with several international establishments, including the University of Kent, VTT (the Technical Reserarch Center of Finland) and Eurotech. On the national side I contributed to a one-to-one research contract between ARCES and Telecom Italia. The first part of the thesis is focused on problem statement and related work and addresses interoperability issues and related architecture components. The second part is focused on specific architectures and frameworks: - MobiComp: a context management framework that I used in cultural heritage applications - CAB: a context, preference and profile based application broker which I designed within EPOCH Network of Excellence - M3: "Semantic Web based" information sharing infrastructure for smart spaces designed by Nokia within the European project SOFIA - NoTa: a service and transport independent connectivity framework - OSGi: the well known Java based service support framework The final section is dedicated to the middleware, the tools and, the SW agents developed during my Doctorate time to support context-aware services in smart environments.
Resumo:
Opportunistic routing (OR) employs a list of candi- dates to improve reliability of wireless transmission. However, list-based OR features restrict the freedom of opportunism, since only the listed nodes can compete for packet forwarding. Additionally, the list is statically generated based on a single metric prior to data transmission, which is not appropriate for mobile ad-hoc networks. This paper provides a thorough perfor- mance evaluation of a new protocol - Context-aware Opportunistic Routing (COR). The contributions of COR are threefold. First, it uses various types of context information simultaneously such as link quality, geographic progress, and residual energy of nodes to make routing decisions. Second, it allows all qualified nodes to participate in packet forwarding. Third, it exploits the relative mobility of nodes to further improve performance. Simulation results show that COR can provide efficient routing in mobile environments, and it outperforms existing solutions that solely rely on a single metric by nearly 20 - 40 %.
Resumo:
Opportunistic routing (OR) employs a list of candidates to improve wireless transmission reliability. However, conventional list-based OR restricts the freedom of opportunism, since only the listed nodes are allowed to compete for packet forwarding. Additionally, the list is generated statically based on a single network metric prior to data transmission, which is not appropriate for mobile ad-hoc networks (MANETs). In this paper, we propose a novel OR protocol - Context-aware Adaptive Opportunistic Routing (CAOR) for MANETs. CAOR abandons the idea of candidate list and it allows all qualified nodes to participate in packet transmission. CAOR forwards packets by simultaneously exploiting multiple cross-layer context information, such as link quality, geographic progress, energy, and mobility.With the help of the Analytic Hierarchy Process theory, CAOR adjusts the weights of context information based on their instantaneous values to adapt the protocol behavior at run-time. Moreover, CAOR uses an active suppression mechanism to reduce packet duplication. Simulation results show that CAOR can provide efficient routing in highly mobile environments. The adaptivity feature of CAOR is also validated.
Resumo:
Mobile ad-hoc networks (MANETs) and wireless sensor networks (WSNs) have been attracting increasing attention for decades due to their broad civilian and military applications. Basically, a MANET or WSN is a network of nodes connected by wireless communication links. Due to the limited transmission range of the radio, many pairs of nodes in MANETs or WSNs may not be able to communicate directly, hence they need other intermediate nodes to forward packets for them. Routing in such types of networks is an important issue and it poses great challenges due to the dynamic nature of MANETs or WSNs. On the one hand, the open-air nature of wireless environments brings many difficulties when an efficient routing solution is required. The wireless channel is unreliable due to fading and interferences, which makes it impossible to maintain a quality path from a source node to a destination node. Additionally, node mobility aggravates network dynamics, which causes frequent topology changes and brings significant overheads for maintaining and recalculating paths. Furthermore, mobile devices and sensors are usually constrained by battery capacity, computing and communication resources, which impose limitations on the functionalities of routing protocols. On the other hand, the wireless medium possesses inherent unique characteristics, which can be exploited to enhance transmission reliability and routing performance. Opportunistic routing (OR) is one promising technique that takes advantage of the spatial diversity and broadcast nature of the wireless medium to improve packet forwarding reliability in multihop wireless communication. OR combats the unreliable wireless links by involving multiple neighboring nodes (forwarding candidates) to choose packet forwarders. In opportunistic routing, a source node does not require an end-to-end path to transmit packets. The packet forwarding decision is made hop-by-hop in a fully distributed fashion. Motivated by the deficiencies of existing opportunistic routing protocols in dynamic environments such as mobile ad-hoc networks or wireless sensor networks, this thesis proposes a novel context-aware adaptive opportunistic routing scheme. Our proposal selects packet forwarders by simultaneously exploiting multiple types of cross-layer context information of nodes and environments. Our approach significantly outperforms other routing protocols that rely solely on a single metric. The adaptivity feature of our proposal enables network nodes to adjust their behaviors at run-time according to network conditions. To accommodate the strict energy constraints in WSNs, this thesis integrates adaptive duty-cycling mechanism to opportunistic routing for wireless sensor nodes. Our approach dynamically adjusts the sleeping intervals of sensor nodes according to the monitored traffic load and the estimated energy consumption rate. Through the integration of duty cycling of sensor nodes and opportunistic routing, our protocol is able to provide a satisfactory balance between good routing performance and energy efficiency for WSNs.
Resumo:
The user experience on watching live video se- quences transmitted over a Flying Ad-Hoc Networks (FANETs) must be considered to drop packets in overloaded queues, in scenarios with high buffer overflow and packet loss rate. In this paper, we introduce a context-aware adaptation mechanism to manage overloaded buffers. More specifically, we propose a utility function to compute the dropping probability of each packet in overloaded queues based on video context information, such as frame importance, packet deadline, and sensing relevance. In this way, the proposed mechanism drops the packet that adds the minimum video distortion. Simulation evaluation shows that the proposed adaptation mechanism provides real-time multimedia dissemination with QoE support in a multi-hop, multi-flow, and mobile network environments.
Resumo:
Low quality of wireless links leads to perpetual transmission failures in lossy wireless environments. To mitigate this problem, opportunistic routing (OR) has been proposed to improve the throughput of wireless multihop ad-hoc networks by taking advantage of the broadcast nature of wireless channels. However, OR can not be directly applied to wireless sensor networks (WSNs) due to some intrinsic design features of WSNs. In this paper, we present a new OR solution for WSNs with suitable adaptations to their characteristics. Our protocol, called SCAD-Sensor Context-aware Adaptive Duty-cycled beaconless opportunistic routing protocol is a cross-layer routing approach and it selects packet forwarders based on multiple sensor context information. To reach a balance between performance and energy-efficiency, SCAD adapts the duty-cycles of sensors according to real-time traffic loads and energy drain rates. We compare SCAD against other protocols through extensive simulations. Evaluation results show that SCAD outperforms other protocols in highly dynamic scenarios.
Resumo:
The increasing interest in autonomous coordinated driving and in proactive safety services, exploiting the wealth of sensing and computing resources which are gradually permeating the urban and vehicular environments, is making provisioning of high levels of QoS in vehicular networks an urgent issue. At the same time, the spreading model of a smart car, with a wealth of infotainment applications, calls for architectures for vehicular communications capable of supporting traffic with a diverse set of performance requirements. So far efforts focused on enabling a single specific QoS level. But the issues of how to support traffic with tight QoS requirements (no packet loss, and delays inferior to 1ms), and of designing a system capable at the same time of efficiently sustaining such traffic together with traffic from infotainment applications, are still open. In this paper we present the approach taken by the CONTACT project to tackle these issues. The goal of the project is to investigate how a VANET architecture, which integrates content-centric networking, software-defined networking, and context aware floating content schemes, can properly support the very diverse set of applications and services currently envisioned for the vehicular environment.
Resumo:
Although context could be exploited to improve the performance, elasticity and adaptation in most distributed systems that adopt the publish/subscribe (P/S) model of communication, only very few works have explored domains with highly dynamic context, whereas most adopted models are context agnostic. In this paper, we present the key design principles underlying a novel context-aware content-based P/S (CA-CBPS) model of communication, where the context is explicitly managed, focusing on the minimization of network overhead in domains with recurrent context changes thanks to contextual scoping. We highlight how we dealt with the main shortcomings of most of the current approaches. Our research is some of the first to study the problem of explicitly introducing context-awareness into the P/S model to capitalize on contextual information. The envisioned CA-CBPS middleware enables the cloud ecosystem of services to communicate very efficiently, in a decoupled, but contextually scoped fashion.
Resumo:
This paper describes a novel architecture to introduce automatic annotation and processing of semantic sensor data within context-aware applications. Based on the well-known state-charts technologies, and represented using W3C SCXML language combined with Semantic Web technologies, our architecture is able to provide enriched higher-level semantic representations of user’s context. This capability to detect and model relevant user situations allows a seamless modeling of the actual interaction situation, which can be integrated during the design of multimodal user interfaces (also based on SCXML) for them to be adequately adapted. Therefore, the final result of this contribution can be described as a flexible context-aware SCXML-based architecture, suitable for both designing a wide range of multimodal context-aware user interfaces, and implementing the automatic enrichment of sensor data, making it available to the entire Semantic Sensor Web