AndroMedia - Towards a Context-aware Mobile Music Recommender
Contribuinte(s) |
Helsingfors universitet, matematisk-naturvetenskapliga fakulteten, institutionen för datavetenskap University of Helsinki, Faculty of Science, Department of Computer Science Helsingin yliopisto, matemaattis-luonnontieteellinen tiedekunta, tietojenkäsittelytieteen laitos |
---|---|
Data(s) |
19/05/2008
|
Resumo |
Portable music players have made it possible to listen to a personal collection of music in almost every situation, and they are often used during some activity to provide a stimulating audio environment. Studies have demonstrated the effects of music on the human body and mind, indicating that selecting music according to situation can, besides making the situation more enjoyable, also make humans perform better. For example, music can boost performance during physical exercises, alleviate stress and positively affect learning. We believe that people intuitively select different types of music for different situations. Based on this hypothesis, we propose a portable music player, AndroMedia, designed to provide personalised music recommendations using the user’s current context and listening habits together with other user’s situational listening patterns. We have developed a prototype that consists of a central server and a PDA client. The client uses Bluetooth sensors to acquire context information and logs user interaction to infer implicit user feedback. The user interface also allows the user to give explicit feedback. Large user interface elements facilitate touch-based usage in busy environments. The prototype provides the necessary framework for using the collected information together with other user’s listening history in a context- enhanced collaborative filtering algorithm to generate context-sensitive recommendations. The current implementation is limited to using traditional collaborative filtering algorithms. We outline the techniques required to create context-aware recommendations and present a survey on mobile context-aware music recommenders found in literature. As opposed to the explored systems, AndroMedia utilises other users’ listening habits when suggesting tunes, and does not require any laborious set up processes. |
Identificador |
URN:NBN:fi-fe200806251586 |
Idioma(s) |
en |
Publicador |
Helsingin yliopisto Helsingfors universitet University of Helsinki |
Direitos |
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited. Publikationen är skyddad av upphovsrätten. Den får läsas och skrivas ut för personligt bruk. Användning i kommersiellt syfte är förbjuden. Julkaisu on tekijänoikeussäännösten alainen. Teosta voi lukea ja tulostaa henkilökohtaista käyttöä varten. Käyttö kaupallisiin tarkoituksiin on kielletty. |
Tipo |
Master's thesis Pro gradu Pro gradu Text |