917 resultados para Conjugate gradient solver


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optimal control laws are obtained for the elevator and the ailerons for a modern fighter aircraft in a rolling pullout maneuver. The problem is solved for three flight conditions using the conjugate gradient method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) using near-infrared (NIR) light is a promising tool for noninvasive imaging of deep tissue. This technique is capable of quantitative reconstructions of absorption coefficient inhomogeneities of tissue. The motivation for reconstructing the optical property variation is that it, and, in particular, the absorption coefficient variation, can be used to diagnose different metabolic and disease states of tissue. In DOT, like any other medical imaging modality, the aim is to produce a reconstruction with good spatial resolution and accuracy from noisy measurements. We study the performance of a phase array system for detection of optical inhomogeneities in tissue. The light transport through a tissue is diffusive in nature and can be modeled using diffusion equation if the optical parameters of the inhomogeneity are close to the optical properties of the background. The amplitude cancellation method that uses dual out-of-phase sources (phase array) can detect and locate small objects in turbid medium. The inverse problem is solved using model based iterative image reconstruction. Diffusion equation is solved using finite element method for providing the forward model for photon transport. The solution of the forward problem is used for computing the Jacobian and the simultaneous equation is solved using conjugate gradient search. The simulation studies have been carried out and the results show that a phase array system can resolve inhomogeneities with sizes of 5 mm when the absorption coefficient of the inhomogeneity is twice that of the background tissue. To validate this result, a prototype model for performing a dual-source system has been developed. Experiments are carried out by inserting an inhomogeneity of high optical absorption coefficient in an otherwise homogeneous phantom while keeping the scattering coefficient same. The high frequency (100 MHz) modulated dual out-of-phase laser source light is propagated through the phantom. The interference of these sources creates an amplitude null and a phase shift of 180° along a plane between the two sources with a homogeneous object. A solid resin phantom with inhomogeneities simulating the tumor is used in our experiment. The amplitude and phase changes are found to be disturbed by the presence of the inhomogeneity in the object. The experimental data (amplitude and the phase measured at the detector) are used for reconstruction. The results show that the method is able to detect multiple inhomogeneities with sizes of 4 mm. The localization error for a 5 mm inhomogeneity is found to be approximately 1 mm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A hybrid finite difference method and vortex method (HDV), which is based on domain decomposition and proposed by the authors (1992), is improved by using a modified incomplete LU decomposition conjugate gradient method (MILU-CG), and a high order implicit difference algorithm. The flow around a rotating circular cylinder at Reynolds number R-e = 1000, 200 and the angular to rectilinear speed ratio alpha is an element of (0.5, 3.25) is studied numerically. The long-time full developed features about the variations of the vortex patterns in the wake, and drag, lift forces on the cylinder are given. The calculated streamline contours agreed well with the experimental visualized flow pictures. The existence of critical states and the vortex patterns at the states are given for the first time. The maximum lift to drag force ratio can be obtained nearby the critical states.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract. The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Amazônia exibe uma variedade de cenários que se complementam. Parte desse ecossistema sofre anualmente severas alterações em seu ciclo hidrológico, fazendo com que vastos trechos de floresta sejam inundados. Esse fenômeno, entretanto, é extremamente importante para a manutenção de ciclos naturais. Neste contexto, compreender a dinâmica das áreas alagáveis amazônicas é importante para antecipar o efeito de ações não sustentáveis. Sob esta motivação, este trabalho estuda um modelo de escoamento em áreas alagáveis amazônicas, baseado nas equações de Navier-Stokes, além de ferramentas que possam ser aplicadas ao modelo, favorecendo uma nova abordagem do problema. Para a discretização das equações é utilizado o Método dos Volumes Finitos, sendo o Método do Gradiente Conjugado a técnica escolhida para resolver os sistemas lineares associados. Como técnica de resolução numérica das equações, empregou-se o Método Marker and Cell, procedimento explícito para solução das equações de Navier-Stokes. Por fim, as técnicas são aplicadas a simulações preliminares utilizando a estrutura de dados Autonomous Leaves Graph, que tem recursos adaptativos para manipulação da malha que representa o domínio do problema

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Em uma grande gama de problemas físicos, governados por equações diferenciais, muitas vezes é de interesse obter-se soluções para o regime transiente e, portanto, deve-se empregar técnicas de integração temporal. Uma primeira possibilidade seria a de aplicar-se métodos explícitos, devido à sua simplicidade e eficiência computacional. Entretanto, esses métodos frequentemente são somente condicionalmente estáveis e estão sujeitos a severas restrições na escolha do passo no tempo. Para problemas advectivos, governados por equações hiperbólicas, esta restrição é conhecida como a condição de Courant-Friedrichs-Lewy (CFL). Quando temse a necessidade de obter soluções numéricas para grandes períodos de tempo, ou quando o custo computacional a cada passo é elevado, esta condição torna-se um empecilho. A fim de contornar esta restrição, métodos implícitos, que são geralmente incondicionalmente estáveis, são utilizados. Neste trabalho, foram aplicadas algumas formulações implícitas para a integração temporal no método Smoothed Particle Hydrodynamics (SPH) de modo a possibilitar o uso de maiores incrementos de tempo e uma forte estabilidade no processo de marcha temporal. Devido ao alto custo computacional exigido pela busca das partículas a cada passo no tempo, esta implementação só será viável se forem aplicados algoritmos eficientes para o tipo de estrutura matricial considerada, tais como os métodos do subespaço de Krylov. Portanto, fez-se um estudo para a escolha apropriada dos métodos que mais se adequavam a este problema, sendo os escolhidos os métodos Bi-Conjugate Gradient (BiCG), o Bi-Conjugate Gradient Stabilized (BiCGSTAB) e o Quasi-Minimal Residual (QMR). Alguns problemas testes foram utilizados a fim de validar as soluções numéricas obtidas com a versão implícita do método SPH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Desde a década de 1960, devido à pertinência para a indústria petrolífera, a simulação numérica de reservatórios de petróleo tornou-se uma ferramenta usual e uma intensa área de pesquisa. O principal objetivo da modelagem computacional e do uso de métodos numéricos, para a simulação de reservatórios de petróleo, é o de possibilitar um melhor gerenciamento do campo produtor, de maneira que haja uma maximização na recuperação de hidrocarbonetos. Este trabalho tem como objetivo principal paralelizar, empregando a interface de programação de aplicativo OpenMP (Open Multi-Processing), o método numérico utilizado na resolução do sistema algébrico resultante da discretização da equação que descreve o escoamento monofásico em um reservatório de gás, em termos da variável pressão. O conjunto de equações governantes é formado pela equação da continuidade, por uma expressão para o balanço da quantidade de movimento e por uma equação de estado. A Equação da Difusividade Hidráulica (EDH), para a variável pressão, é obtida a partir deste conjunto de equações fundamentais, sendo então discretizada pela utilização do Método de Diferenças Finitas, com a escolha por uma formulação implícita. Diferentes testes numéricos são realizados a fim de estudar a eficiência computacional das versões paralelizadas dos métodos iterativos de Jacobi, Gauss-Seidel, Sobre-relaxação Sucessiva, Gradientes Conjugados (CG), Gradiente Biconjugado (BiCG) e Gradiente Biconjugado Estabilizado (BiCGStab), visando a uma futura aplicação dos mesmos na simulação de reservatórios de gás. Ressalta-se que a presença de heterogeneidades na rocha reservatório e/ou às não-linearidades presentes na EDH para o escoamento de gás aumentam a necessidade de métodos eficientes do ponto de vista de custo computacional, como é o caso de estratégias usando OpenMP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five models for human interleukin-7 (HIL-7), HIL-9, HIL-13, HIL-15 and HIL-17 have been generated by SYBYL software package. The primary models were optimized using molecular dynamics and molecular mechanics methods. The final models were optimized using a steepest descent algorithm and a subsequent conjugate gradient method. The complexes with these interleukins and the common gamma chain of interleukin-2 receptor (IL-2R) were constructed and subjected to energy minimization. We found residues, such as Gln127 and Tyr103, of the common gamma chain of IL-2R are very important. Other residues, e.g. Lys70, Asn128 and Glu162, are also significant. Four hydrophobic grooves and two hydrophilic sites converge at the active site triad of the gamma chain. The binding sites of these interleukins interaction with the common gamma chain exist in the first helical and/or the fourth helical domains. Therefore, we conclude that these interleukins binds to the common gamma chain of IL-2R by the first and the fourth helix domain. Especially at the binding sites of some residues (lysine, arginine, asparagine, glutamic acid and aspartic acid), with a discontinuous region of the common gamma chain of IL-2R, termed the interleukins binding sites (103-210). The study of these sites can be important for the development of new drugs. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The atomic motion is coupled by the fast and slow components due to the high frequency vibration of atoms and the low frequency deformation of atomic lattice, respectively. A two-step approximate method was presented to determine the atomic slow motion. The first step is based on the change of the location of the cold potential well bottom and the second step is based on the average of the appropriate slow velocities of the surrounding atoms. The simple tensions of one-dimensional atoms and two-dimensional atoms were performed with the full molecular dynamics simulations. The conjugate gradient method was employed to determine the corresponding location of cold potential well bottom. Results show that our two-step approximate method is appropriate to determine the atomic slow motion under the low strain rate loading. This splitting method may be helpful to develop more efficient molecular modeling methods and simulations pertinent to realistic loading conditions of materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To extend the cross-hole seismic 2D data to outside 3D seismic data, reconstructing the low frequency data to high frequency data is necessary. Blind deconvolution method is a key technology. In this paper, an implementation of Blind deconvolution is introduced. And optimized precondition conjugate gradient method is used to improve the stability of the algorithm and reduce the computation. Then high-frequency retrieved Seismic data and the cross-hole seismic data is combined for constraint inversion. Real data processing proved the method is effective. To solve the problem that the seismic data resolution can’t meet the request of reservoir prediction in the river face thin-layers in Chinese eastern oil fields, a high frequency data reconstruction method is proposed. The extrema of the seismic data are used to get the modulation function which operated with the original seismic data to get the high frequency part of the reconstruction data to rebuild the wide band data. This method greatly saves the computation, and easy to adjust the parameters. In the output profile, the original features of the seismic events are kept, the common feint that breaking the events and adding new zeros to produce alias is avoided. And the interbeded details are enhanced compared to the original profiles. The effective band of seismic data is expended and the method is approved by the processing of the field data. Aim to the problem in the exploration and development of Chinese eastern oil field that the high frequency log data and the relative low frequency seismic data can’t be merged, a workflow of log data extrapolation constrained by time-phase model based on local wave decomposition is raised. The seismic instantaneous phase is resolved by local wave decomposition to build time-phase model, the layers beside the well is matched to build the relation of log and seismic data, multiple log info is extrapolated constrained by seismic equiphase map, high precision attributes inverse sections are produced. In the course of resolve the instantaneous phase, a new method of local wave decomposition --Hilbert transform mean mode decomposition(HMMD) is raised to improve the computation speed and noise immunity. The method is applied in the high resolution reservoir prediction in Mao2 survey of Daqing oil field, Multiple attributes profiles of wave impedance, gamma-ray, electrical resistivity, sand membership degree are produced, of which the resolution is high and the horizontal continuous is good. It’s proved to be a effective method for reservoir prediction and estimation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Post-stack seismic impedance inversion is the key technology of reservoir prediction and identification. Geophysicists have done a lot of research for the problem, but the developed methods still cannot satisfy practical requirements completely. The results of different inversion methods are different and the results of one method used by different people are different too. The reasons are due to the quality of seismic data, inaccurate wavelet extraction, errors between normal incidence assumption and real situation, and so on. In addition, there are two main influence factors: one is the band-limited property of seismic data; the other is the ill-posed property of impedance inversion. Thus far, the most effective way to solve the band-limited problem is the constrained inversion. And the most effective way to solve ill-posed problems is the regularization method assisted with proper optimization techniques. This thesis systematically introduces the iterative regularization methods and numerical optimization methods for impedance inversion. A regularized restarted conjugate gradient method for solving ill-posed problems in impedance inversion is proposed. Theoretic simulations are made and field data applications are performed. It reveals that the proposed algorithm possesses the superiority to conventional conjugate gradient method. Finally, non-smooth optimization is proposed as the further research direction in seismic impedance inversion according to practical situation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The South China Sea (SCS) is one of the largest marginal seas in the western Pacific, which is located at the junction of Eurasian plate, Pacific plate and Indian-Australian plate. It was formed by continent breakup and sea-floor spreading in Cenozoic. The complicated interaction among the three major plates made tectonic movement complex and geological phenomena very rich in this area. The SCS is an ideal place to study the formation and evolution of rifted continental margin and sea-floor spreading since it is old enough to have experienced the major stages of the basin evolution but still young enough to have preserved its original nature. As the demand for energy grows day by day in our country, the deep water region of the northern continental margin in the SCS has become a focus of oil and gas exploration because of its huge hydrocarbon potential. Therefore, to study the rifted continental margin of the SCS not only can improve our understanding of the formation and evolution processes of rifted continental margin, but also can provide theoretical support for hydrocarbon exploration in rifted continental margin. This dissertation mainly includes five topics as follows: (1) Various classic lithosphere stretching models are reviewed, and the continuous non-uniform stretching model is modified to make it suitable for the case where the extension of lithopheric mantle exceeds that of the crust. Then simple/pure shear flexural cantilever model is applied to model the basement geometries of SO49-18 profile in the northern continental margin of the SCS. By fitting the basements obtained by using 2DMove software with modeling results, it is found that the reasonable effective elastic thickness is less than 5km in this region. According to this result, it is assumed that there is weak lower crust in the northern continental margin in the SCS. (2) We research on the methods for stretching factor estimation based on various lithosphere stretching models, and apply the method based on multiple finite rifting model to estimate the stretching factors of several wells and profiles in the northern continental margin of the SCS. (3) We improve one-dimension strain rate inversion method with conjugate gradient method, and apply it to invert the strain rate of several wells in the northern continental margin of the SCS. Two-dimension strain rate forward modeling is carried out, and the modeling results show that effective elastic thickness is a key parameter to control basin’s geometry. (4) We simulate divergent upwelling mantle flow model using finite difference method, and apply this newly developed model to examine the formation mechanism of the northwest and central sub-basin in the SCS. (5) We inverse plate thickness and basal temperature of oceanic lithosphere using sea-floor ages and bathymetries of the North Pacific and the North Atlantic based on varied-parameters plate model, in which the heat conductivity, heat capacity and coefficient of thermal expansion depend on temperature or depth. A new empirical formula is put forward based the inversed parameters, which depicts the relation among sea-floor age, bathymetry and heat flow. Then various similar empirical formulae, including the newly developed one, are applied to examine the sea-floor spread issue in the SCS based on the heat flow and bathymetry data of the abyssal sub-basin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impedance inversion is very important in seismic technology. It is based on seismic profile. Good inversion result is derived from high quality seismic profile, which is formed using high resolution imaging resolution. High-resolution process demands that signal/noise ratio is high. It is very important for seismic inversion to improve signal/noise ratio. the main idea is that the physical parameter (wave impedance), which describes the stratigraphy directly, is achieved from seismic data expressing structural style indirectly. The solution of impedance inversion technology, which is based on convolution model, is arbitrary. It is a good way to apply the priori information as the restricted condition in inversion. An updated impedance inversion technology is presented which overcome the flaw of traditional model and highlight the influence of structure. Considering impedance inversion restricted by sedimentary model, layer filling style and congruence relation, the impedance model is built. So the impedance inversion restricted by geological rule could be realized. there are some innovations in this dissertation: 1. The best migration aperture is achieved from the included angle of time surface of diffracted wave and reflected wave. Restricted by structural model, the dip of time surface of reflected wave and diffracted wave is given. 2. The conventional method of FXY forcasting noise is updated, and the signal/noise ratio is improved. 3. Considering the characteristic of probability distribution of seismic data and geological events fully, an object function is constructed using the theory of Bayes estimation as the criterion. The mathematics is used here to describe the content of practice theory. 4. Considering the influence of structure, the seismic profile is interpreted to build the model of structure. A series of structure model is built. So as the impedance model. The high frequency of inversion is controlled by the geological rule. 5. Conjugate gradient method is selected to improve resolving process for it fit the demands of geophysics, and the efficiency of algorithm is enhanced. As the geological information is used fully, the result of impedance inversion is reasonable and complex reservoir could be forecasted further perfectly.