997 resultados para Coherent States


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we explore the possibility of fundamental tests for coherent-state optical quantum computing gates [ T. C. Ralph et al. Phys. Rev. A 68 042319 (2003)] using sophisticated but not unrealistic quantum states. The major resource required in these gates is a state diagonal to the basis states. We use the recent observation that a squeezed single-photon state [S(r)∣1⟩] approximates well an odd superposition of coherent states (∣α⟩−∣−α⟩) to address the diagonal resource problem. The approximation only holds for relatively small α, and hence these gates cannot be used in a scalable scheme. We explore the effects on fidelities and probabilities in teleportation and a rotated Hadamard gate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In many instances we find it advantageous to display a quantum optical density matrix as a generalized statistical ensemble of coherent wave fields. The weight functions involved in these constructions turn out to belong to a family of distributions, not always smooth functions. In this paper we investigate this question anew and show how it is related to the problem of expanding an arbitrary state in terms of an overcomplete subfamily of the overcomplete set of coherent states. This provides a relatively transparent derivation of the optical equivalence theorem. An interesting by-product is the discovery of a new class of discrete diagonal representations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A long-lived coherent state and nonlinear interaction have been experimentally demonstrated for the vibrational mode of a trapped ion. We propose an implementation of quantum computation using coherent states of the vibrational modes of trapped ions. Differently from earlier experiments, we consider a far-off resonance for the interaction between external fields and the ion in a bidimensional trap. By appropriate choices of the detunings between the external fields, the adiabatic elimination of the ionic excited level from the Hamiltonian of the system allows for beam splitting between orthogonal vibrational modes, production of coherent states, and nonlinear interactions of various kinds. In particular, this model enables the generation of the four coherent Bell states. Furthermore, all the necessary operations for quantum computation, such as preparation of qubits and one-qubit and controlled two-qubit operations, are possible. The detection of the state of a vibrational mode in a Bell state is made possible by the combination of resonant and off-resonant interactions between the ion and some external fields. We show that our read-out scheme provides highly efficient discrimination between all the four Bell states. We extend this to a quantum register composed of many individually trapped ions. In this case, operations on two remote qubits are possible through a cavity mode. We emphasize that our remote-qubit operation scheme does not require a high-quality factor resonator: the cavity field acts as a catalyst for the gate operation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We propose an experimentally feasible scheme to generate a superposition of travelling field coherent states using an extremely small Kerr effect and an ancilla which could be a single photon or two entangled twin photons. The scheme contains ingredients which are all within the current state of the art and is robust against the main sources of errors which can be identified in our setups.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate the violation of noncontextuality by a class of continuous-variable states, including variations of entangled coherent states and a two-mode continuous superposition of coherent states. We generalize the Kochen-Specker (KS) inequality discussed by Cabello [A. Cabello, Phys. Rev. Lett. 101, 210401 (2008)] by using effective bidimensional observables implemented through physical operations acting on continuous-variable states, in a way similar to an approach to the falsification of Bell-Clauser-Horne-Shimony-Holt inequalities put forward recently. We test for state-independent violation of KS inequalities under variable degrees of state entanglement and mixedness. We then demonstrate theoretically the violation of a KS inequality for any two-mode state by using pseudospin observables and a generalized quasiprobability function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new formal approach for representation of polarization states of coherent and partially coherent electromagnetic plane waves is presented. Its basis is a purely geometric construction for the normalised complex-analytic coherent wave as a generating line in the sphere of wave directions, and whose Stokes vector is determined by the intersection with the conjugate generating line. The Poincare sphere is now located in physical space, simply a coordination of the wave sphere, its axis aligned with the wave vector. Algebraically, the generators representing coherent states are represented by spinors, and this is made consistent with the spinor-tensor representation of electromagnetic theory by means of an explicit reference spinor we call the phase flag. As a faithful unified geometric representation, the new model provides improved formal tools for resolving many of the geometric difficulties and ambiguities that arise in the traditional formalism.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By using a coherent state quantization of paragrassmann variables, operators are constructed in finite Hilbert spaces. We thus obtain in a straightforward way a matrix representation of the paragrassmann algebra. This algebra of finite matrices realizes a deformed Weyl-Heisenberg algebra. The study of mean values in coherent states of some of these operators leads to interesting conclusions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pulsed coherent excitation of a two-level atom strongly coupled to a resonant cavity mode will create a superposition of two coherent states of opposite amplitudes in the field. By choosing proper parameters of interaction time and pulse shape the field after the pulse will be almost disentangled from the atom and can be efficiently outcoupled through cavity decay. The fidelity of the generation approaches unity if the atom-field coupling strength is much larger than the atomic and cavity decay rates. This implies a strong difference between even and odd output photon number counts. Alternatively, the coherence of the two generated field components can be proven by phase-dependent annihilation of the generated nonclassical superposition state by a second pulse.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We discuss the long-distance transmission of qubits encoded in optical coherent states. Through absorption, these qubits suffer from two main types of errors, namely the reduction of the amplitude of the coherent states and accidental application of the Pauli Z operator. We show how these errors can be fixed using techniques of teleportation and error-correcting codes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate an optical scheme to conditionally engineer quantum states using a beam splitter, homodyne detection, and a squeezed vacuum as an ancillar state. This scheme is efficient in producing non-Gaussian quantum states such as squeezed single photons and superpositions of coherent states (SCSs). We show that a SCS with well defined parity and high fidelity can be generated from a Fock state of n

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present several examples where prominent quantum properties are transferred from a microscopic superposition to thermal states at high temperatures. Our work is motivated by an analogy of Schrodinger's cat paradox, where the state corresponding to the virtual cat is a mixed thermal state with a large average photon number. Remarkably, quantum entanglement can be produced between thermal states with nearly the maximum Bell-inequality violation even when the temperatures of both modes approach infinity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose an experimentally feasible scheme to generate various types of entangled states of light fields by using beam splitters and single-photon detectors. Two beams of light fields are incident on two beam splitters respectively with each beam being asymmetrically split into two parts in which one part is supposed to be so weak that it contains at most one photon. We let the two weak output modes interfere at a third beam splitter. A conditional joint measurement on both weak output modes may result in an entanglement between the other two output modes. The conditions for the maximal entanglement are discussed based on the concurrence. Several specific examples are also examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Non-classical properties and quantum interference (QI) in two-photon excitation of a three level atom (|1〉), |2〉, |3〉) in a ladder configuration, illuminated by multiple fields in non-classical (squeezed) and/or classical (coherent) states, is studied. Fundamentally new effects associated with quantum correlations in the squeezed fields and QI due to multiple excitation pathways have been observed. Theoretical studies and extrapolations of these findings have revealed possible applications which are far beyond any current capabilities, including ultrafast nonlinear mixing, ultrafast homodyne detection and frequency metrology. The atom used throughout the experiments was Cesium, which was magneto-optically trapped in a vapor cell to produce a Doppler-free sample. For the first part of the work the |1〉 → |2〉 → |3〉 transition (corresponding to the 6S1/2F = 4 → 6P3/2F' = 5 → 6D5/2F" = 6 transition) was excited by using the quantum-correlated signal (Ɛs) and idler (Ɛi) output fields of a subthreshold non-degenerate optical parametric oscillator, which was tuned so that the signal and idler fields were resonant with the |1〉 → |2〉 and |2〉 → |3〉 transitions, respectively. In contrast to excitation with classical fields for which the excitation rate as a function of intensity has always an exponent greater than or equal to two, excitation with squeezed-fields has been theoretically predicted to have an exponent that approaches unity for small enough intensities. This was verified experimentally by probing the exponent down to a slope of 1.3, demonstrating for the first time a purely non-classical effect associated with the interaction of squeezed fields and atoms. In the second part excitation of the two-photon transition by three phase coherent fields Ɛ1 , Ɛ2 and Ɛ0, resonant with the dipole |1〉 → |2〉 and |2〉 → |3〉 and quadrupole |1〉 → |3〉 transitions, respectively, is studied. QI in the excited state population is observed due to two alternative excitation pathways. This is equivalent to nonlinear mixing of the three excitation fields by the atom. Realizing that in the experiment the three fields are spaced in frequency over a range of 25 THz, and extending this scheme to other energy triplets and atoms, leads to the discovery that ranges up to 100's of THz can be bridged in a single mixing step. Motivated by these results, a master equation model has been developed for the system and its properties have been extensively studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The generation of ultrashort optical pulses by semiconductor lasers has been extensively studied for many years. A number of methods, including gain-/Q-switching and different types of mode locking, have been exploited for the generation of picosecond and sub-picosecond pulses [1]. However, the shortest pulses produced by diode lasers are still much longer and weaker than those that are generated by advanced mode-locked solid-state laser systems [2]. On the other hand, an interesting class of devices based on superradiant emission from multiple contact diode laser structures has also been recently reported [3]. Superradiance (SR) is a transient quantum optics phenomenon based on the cooperative radiative recombination of a large number of oscillators, including atoms, molecules, e-h pairs, etc. SR in semiconductors can be used for the study of fundamental properties of e-h ensembles such as photon-mediated pairing, non-equilibrium e-h condensation, BSC-like coherent states and related phenomena. Due to the intrinsic parameters of semiconductor media, SR emission typically results in the generation of a high-power optical pulse or pulse train, where the pulse duration can be much less than 1 ps, under optimised bias conditions. Advantages of this technique over mode locking in semiconductor laser structures include potentially shorter pulsewidths and much larger peak powers. Moreover, the pulse repetition rate of mode-locked pulses is fixed by the cavity round trip time, whereas the repetition rate of SR pulses is controlled by the current bias and can be varied over a wide range. © 2012 IEEE.