936 resultados para Characterization Of Activated Carbon
Resumo:
Activated carbon is generated from various waste biomass sources like rice straw, wheat straw, wheat straw pellets, olive stones, pistachios shells, walnut shells, beech wood and hardcoal. After drying the biomass is pyrolysed in the temperature range of 500-600 °C at low heating rates of 10 K/min. The activation of the chars is performed as steam activation at temperatures between 800 °C and 900 °C. Both the pyrolysis and activation experiments were run in lab-scale facilities. It is shown that nut shells provide high active surfaces of 1000-1300 m/g whereas the active surface of straw matters does hardly exceed 800 m/g which might be a result of the high ash content of the straws and the slightly higher carbon content of the nut shells. The active surface is detected by BET method. Besides the testing of a many types of biomass for the suitability as base material in the activated carbon production process, the experiments allow for the determination of production parameters like heating rate and pyrolysis temperature, activation time and temperature as well as steam flux which are necessary for the scale up of the process chain. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Stone-fruit activated carbon (SAC) and modified versions containing acidic oxygen and basic nitrogen groups have been used to prepare palladium catalysts by wet impregnation. Carbon supports and catalysts are investigated by thermo-gravimetric analysis, TPD, oxygen chemisorption, TEM and XPS. The influence of the nature of the functional groups on the dispersion and oxidation state of palladium and its activity in hydrogen oxidation is investigated. Pd dispersion is found to increase with the basic strength of functional groups on the support. XPS reveals that introduction of amine groups in SAC results in an increased proportion of Pd0, resistant to re-oxidation. Palladium catalysts supported on activated carbon modified by diethylamine groups are found to exhibit the highest metal dispersion and greatest activity in hydrogen oxidation. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Carbon thin films were synthesized using the original Thermionic Vacuum Arc (TVA) method. Mechanical properties were investigated using Micro Materials NanoTest 500 instrument using a NT Berkovich indenter. XPS provides a quantitative analysis of the surface composition and X-ray generated Auger electron spectroscopy (XAES) performed by Thermoelectron ESCALAB 250 revealed information about the sp3:sp2 ratio of the carbon bondings. Structure and morphology was studied by Transmission Electron Microscope CM120ST, providing information on the grain size distribution of the crystalline diamond structures. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The aim of present paper is to present the latest results on investigations of the carbon thin film deposited by Thermionic Vacuum Arc (TVA) method and laser pyrolysis. X-ray photoelectron spectroscopy (XPS) and X-ray generated Auger electron spectroscopy (XAES) were used to determine composition and sp2 to sp3 ratios in the outer layers of the film surfaces. The analyses were conducted in a Thermoelectron ESCALAB 250 electron spectrometer equipped with a hemispherical sector energy analyser. Monochromated Al K X-radiation was employed for the XPS examination, at source excitation energy of 15 KeV and emission current of 20 mA. Analyzer pass energy of 20 eV with step size of 0.1 eV and dwell time of 100 ms was used throughout. © 2010 SPIE.
Resumo:
The addition of activated carbon particles (Darco-G, average size 4.3,μm) is shown to enhance the initial rate of extraction of copper in a Lewis cell by a mixture of α- and β-hydroxyoximes, when the rate of extraction is controlled by resistances in the organic phase. It is likely that the copper complex is adsorbed by carbon near the interace and partially released in the bulk. The enhancing effect of carbon vanishes when toluene is used as a diluent instead of heptane, presumably because toluene preferentially adsorbs on its surface.
Resumo:
The oxidation of sodium sulphide in the presence of fine activated carbon particles (4.33 μm) has been studied at 75°C in a foam bed contactor. The existing single-stage model of a foam bed reactor has been modified to take into account the effect of heterogeneous catalyst particles and the absorption in the storage section. The variables studied are catalyst loading, initial sulphide concentration and the average liquid hold-up in the foam bed. It is seen that the rates of oxidation of sodium sulphide are considerably enhanced by an increase in the loading of activated carbon particles. The rate of conversion of sodium sulphide also increases with an increase in the average liquid hold-up in the foam. The modified model predicts these effects fairly well. The contribution of reaction in the storage section is found to be less than 2% of the overall rate of conversion in the contactor.
Resumo:
Volumetric method based adsorption measurements of nitrogen on two specimens of activated carbon (Fluka and Sarabhai) reported by us are refitted to two popular isotherms, namely, Dubunin−Astakhov (D−A) and Toth, in light of improved fitting methods derived recently. Those isotherms have been used to derive other data of relevance in design of engineering equipment such as the concentration dependence of heat of adsorption and Henry’s law coefficients. The present fits provide a better representation of experimental measurements than before because the temperature dependence of adsorbed phase volume and structural heterogeneity of micropore distribution have been accounted for in the D−A equation. A new correlation to the Toth equation is a further contribution. The heat of adsorption in the limiting uptake condition is correlated with the Henry’s law coefficients at the near zero uptake condition.
Resumo:
A laboratory model of a thermally driven adsorption refrigeration system with activated carbon as the adsorbent and 1,1,1,2-tetrafluoroethane (HFC 134a) as the refrigerant was developed. The single stage compression system has an ensemble of four adsorbers packed with Maxsorb II specimen of activated carbon that provide a near continuous flow which caters to a cooling load of up to 5W in the 5-18 degrees C region. The objective was to utilise the low grade thermal energy to drive a refrigeration system that can be used to cool some critical electronic components. The laboratory model was tested for it performance at various cooling loads with the heat source temperature from 73 to 93 degrees C. The pressure transients during heating and cooling phases were traced. The cyclic steady state and transient performance data are presented. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The cobalt carbide (Co2C) species was formed in some activated carbon supported cobalt-based (Co/AC) catalysts during the activation of catalysts. It was found that the activity of Fischer-Tropsch reaction over Co-based catalysts decreased due to the formation of cobalt carbide species. Some promoters and pretreatment of activated carbon with steam could restrain the formation of cobalt carbide.
Resumo:
The adsorption behavior of C.I. Reactive Blue 2, C.I. Reactive Red 4, and C.I. Reactive Yellow 2 from aqueous solution onto activated carbon was investigated under various experimental conditions. The adsorption capacity of activated carbon for reactive dyes was found to be relatively high. At pH 7.0 and 298 K, the maximum adsorption capacity for C.I. Reactive Blue 2, C.I. Reactive Yellow 2 and C.I. Reactive Red 4 dyes was found to be 0.27, 0.24, and 0.11 mmol/g, respectively. The shape of the adsorption isotherms indicated an L2-type isotherm according to the Giles and Smith classification. The experimental adsorption data showed good correlation with the Langmuir and Ferundlich isotherm models. Further analysis indicated that the formation of a complete monolayer was not achieved, with the fraction of surface coverage found to be 0.45, 0.42, and 0.22 for C.I. Reactive Blue 2, C.I. Reactive Yellow 2 and C.I. Reactive Red 4 dyes, respectively. Experimental data indicated that the adsorption capacity of activated carbon for the dyes was higher in acidic rather than in basic solutions, and further indicated that the removal of dye increased with increase in the ionic strength of solution, this was attributed to aggregation of reactive dyes in solution. Thermodynamic studies indicated that the adsorption of reactive dyes onto activated carbon was an endothermic process. The adsorption enthalpy (?H) for C.I. Reactive Blue 2 and C.I. Reactive Yellow 2 dyes were calculated at 42.2 and 36.2 kJ/mol, respectively. The negative values of free energy (?G) determined for these systems indicated that adsorption of reactive dyes was spontaneous at the temperatures under investigation (298-328 K). © 2007 Elsevier Ltd. All rights reserved.
Resumo:
In situ high pressure 129Xe NMR spectroscopy in combination with volumetric adsorption measurements were used for the textural characterization of different carbon materials with well-defined porosity including microporous carbide-derived carbons, ordered mesoporous carbide-derived carbon, and ordered mesoporous CMK-3. Adsorption/desorption isotherms were measured also by NMR up to relative pressures close to p/p0 = 1 at 237 K. The 129Xe NMR chemical shift of xenon adsorbed in porous carbons is found to be correlated with the pore size in analogy to other materials such as zeolites. In addition, these measurements were performed loading the samples with n-nonane. Nonane molecules preferentially block the micropores. However, 129Xe NMR spectroscopy proves that the nonane also influences the mesopores, thus providing information about the pore system in hierarchically structured materials.
Resumo:
Diffusions of free and adsorbed molecules of subcritical hydrocarbons in activated carbon were investigated to study the influence of adsorbed molecules on both diffusion processes at low pressures. A collision reflection factor, defined as the fraction of molecules undergoing collision to the solid surface over reflection from the surface, is incorporated into Knudsen diffusivity and surface diffusivity in meso/macropores. Since the porous structure of activated carbon is bimodal in nature, the diffusion of adsorbed molecules is contributed by that of weakly adsorbed molecules on the meso/macropore surfaces and that of strongly adsorbed molecules in the small confinement of micropores. The mobility of adsorbed molecules on the meso/macropore surface is characterized by the surface diffusivity D-mu 2, while that in the micropore is characterized by D-mu 1. In our study with subcritical hydrocarbons, we have found that the former increases almost linearly with pressure, while the latter exhibits a sharp increase at a very low-pressure region and then decreases beyond a critical pressure. This critical pressure is identified as a pressure at which the micropores are saturated.