942 resultados para Centralised data warehouse Architecture


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently there are an overwhelming number of scientific publications in Life Sciences, especially in Genetics and Biotechnology. This huge amount of information is structured in corporate Data Warehouses (DW) or in Biological Databases (e.g. UniProt, RCSB Protein Data Bank, CEREALAB or GenBank), whose main drawback is its cost of updating that makes it obsolete easily. However, these Databases are the main tool for enterprises when they want to update their internal information, for example when a plant breeder enterprise needs to enrich its genetic information (internal structured Database) with recently discovered genes related to specific phenotypic traits (external unstructured data) in order to choose the desired parentals for breeding programs. In this paper, we propose to complement the internal information with external data from the Web using Question Answering (QA) techniques. We go a step further by providing a complete framework for integrating unstructured and structured information by combining traditional Databases and DW architectures with QA systems. The great advantage of our framework is that decision makers can compare instantaneously internal data with external data from competitors, thereby allowing taking quick strategic decisions based on richer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A pesquisa tem o objetivo de contribuir para os estudos relacionados ao desenvolvimento de software, mais especificamente à fase de levantamento de requisitos da Engenharia de Software, ao esclarecer como um método não muito popular, a construção de Ontologias de Domínio, pode ajudar na definição de requisitos de qualidade, que consequentemente contribuem para o sucesso de projetos de implementação de sistemas de informação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mestrado em Gestão de Sistemas de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MEGAGEO - Moving megaliths in the Neolithic is a project that intends to find the provenience of lithic materials in the construction of tombs. A multidisciplinary approach is carried out, with researchers from several of the knowledge fields involved. This work presents a spatial data warehouse specially developed for this project that comprises information from national archaeological databases, geographic and geological information and new geochemical and petrographic data obtained during the project. The use of the spatial data warehouse proved to be essential in the data analysis phase of the project. The Redondo Area is presented as a case study for the application of the spatial data warehouse to analyze the relations between geochemistry, geology and the tombs in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I dati sono una risorsa di valore inestimabile per tutte le organizzazioni. Queste informazioni vanno da una parte gestite tramite i classici sistemi operazionali, dall’altra parte analizzate per ottenere approfondimenti che possano guidare le scelte di business. Uno degli strumenti fondamentali a supporto delle scelte di business è il data warehouse. Questo elaborato è il frutto di un percorso di tirocinio svolto con l'azienda Injenia S.r.l. Il focus del percorso era rivolto all'ottimizzazione di un data warehouse che l'azienda vende come modulo aggiuntivo di un software di nome Interacta. Questo data warehouse, Interacta Analytics, ha espresso nel tempo notevoli criticità architetturali e di performance. L’architettura attualmente usata per la creazione e la gestione dei dati all'interno di Interacta Analytics utilizza un approccio batch, pertanto, l’obiettivo cardine dello studio è quello di trovare soluzioni alternative batch che garantiscano un risparmio sia in termini economici che di tempo, esplorando anche la possibilità di una transizione ad un’architettura streaming. Gli strumenti da utilizzare in questa ricerca dovevano inoltre mantenersi in linea con le tecnologie utilizzate per Interacta, ossia i servizi della Google Cloud Platform. Dopo una breve dissertazione sul background teorico di questa area tematica, l'elaborato si concentra sul funzionamento del software principale e sulla struttura logica del modulo di analisi. Infine, si espone il lavoro sperimentale, innanzitutto proponendo un'analisi delle criticità principali del sistema as-is, dopodiché ipotizzando e valutando quattro ipotesi migliorative batch e due streaming. Queste, come viene espresso nelle conclusioni della ricerca, migliorano di molto le performance del sistema di analisi in termini di tempistiche di elaborazione, di costo totale e di semplicità dell'architettura, in particolare grazie all'utilizzo dei servizi serverless con container e FaaS della piattaforma cloud di Google.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, data mining is based on low-level specications of the employed techniques typically bounded to a specic analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Here, we propose a model-driven approach based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (via data-warehousing technology) and the analysis models for data mining (tailored to a specic platform). Thus, analysts can concentrate on the analysis problem via conceptual data-mining models instead of low-level programming tasks related to the underlying-platform technical details. These tasks are now entrusted to the model-transformations scaffolding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis makes a contribution to the Change Data Capture (CDC) field by providing an empirical evaluation on the performance of CDC architectures in the context of realtime data warehousing. CDC is a mechanism for providing data warehouse architectures with fresh data from Online Transaction Processing (OLTP) databases. There are two types of CDC architectures, pull architectures and push architectures. There is exiguous data on the performance of CDC architectures in a real-time environment. Performance data is required to determine the real-time viability of the two architectures. We propose that push CDC architectures are optimal for real-time CDC. However, push CDC architectures are seldom implemented because they are highly intrusive towards existing systems and arduous to maintain. As part of our contribution, we pragmatically develop a service based push CDC solution, which addresses the issues of intrusiveness and maintainability. Our solution uses Data Access Services (DAS) to decouple CDC logic from the applications. A requirement for the DAS is to place minimal overhead on a transaction in an OLTP environment. We synthesize DAS literature and pragmatically develop DAS that eciently execute transactions in an OLTP environment. Essentially we develop effeicient RESTful DAS, which expose Transactions As A Resource (TAAR). We evaluate the TAAR solution and three pull CDC mechanisms in a real-time environment, using the industry recognised TPC-C benchmark. The optimal CDC mechanism in a real-time environment, will capture change data with minimal latency and will have a negligible affect on the database's transactional throughput. Capture latency is the time it takes a CDC mechanism to capture a data change that has been applied to an OLTP database. A standard definition for capture latency and how to measure it does not exist in the field. We create this definition and extend the TPC-C benchmark to make the capture latency measurement. The results from our evaluation show that pull CDC is capable of real-time CDC at low levels of user concurrency. However, as the level of user concurrency scales upwards, pull CDC has a significant impact on the database's transaction rate, which affirms the theory that pull CDC architectures are not viable in a real-time architecture. TAAR CDC on the other hand is capable of real-time CDC, and places a minimal overhead on the transaction rate, although this performance is at the expense of CPU resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geographic Data Warehouses (GDW) are one of the main technologies used in decision-making processes and spatial analysis, and the literature proposes several conceptual and logical data models for GDW. However, little effort has been focused on studying how spatial data redundancy affects SOLAP (Spatial On-Line Analytical Processing) query performance over GDW. In this paper, we investigate this issue. Firstly, we compare redundant and non-redundant GDW schemas and conclude that redundancy is related to high performance losses. We also analyze the issue of indexing, aiming at improving SOLAP query performance on a redundant GDW. Comparisons of the SB-index approach, the star-join aided by R-tree and the star-join aided by GiST indicate that the SB-index significantly improves the elapsed time in query processing from 25% up to 99% with regard to SOLAP queries defined over the spatial predicates of intersection, enclosure and containment and applied to roll-up and drill-down operations. We also investigate the impact of the increase in data volume on the performance. The increase did not impair the performance of the SB-index, which highly improved the elapsed time in query processing. Performance tests also show that the SB-index is far more compact than the star-join, requiring only a small fraction of at most 0.20% of the volume. Moreover, we propose a specific enhancement of the SB-index to deal with spatial data redundancy. This enhancement improved performance from 80 to 91% for redundant GDW schemas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doctoral Thesis in Information Systems and Technologies Area of Engineering and Manag ement Information Systems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last few years many research efforts have been done to improve the design of ETL (Extract-Transform-Load) systems. ETL systems are considered very time-consuming, error-prone and complex involving several participants from different knowledge domains. ETL processes are one of the most important components of a data warehousing system that are strongly influenced by the complexity of business requirements, their changing and evolution. These aspects influence not only the structure of a data warehouse but also the structures of the data sources involved with. To minimize the negative impact of such variables, we propose the use of ETL patterns to build specific ETL packages. In this paper, we formalize this approach using BPMN (Business Process Modelling Language) for modelling more conceptual ETL workflows, mapping them to real execution primitives through the use of a domain-specific language that allows for the generation of specific instances that can be executed in an ETL commercial tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os recursos computacionais exigidos durante o processamento de grandes volumes de dados durante um processo de povoamento de um data warehouse faz com que a necessidade da procura de novas implementações tenha também em atenção a eficiência energética dos diversos componentes processuais que integram um qualquer sistema de povoamento. A lacuna de técnicas ou metodologias para categorizar e avaliar o consumo de energia em sistemas de povoamento de data warehouses é claramente notória. O acesso a esse tipo de informação possibilitaria a construção de sistemas de povoamento de data warehouses com níveis de consumo de energia mais baixos e, portanto, mais eficientes. Partindo da adaptação de técnicas aplicadas a sistemas de gestão de base de dados para a obtenção dos consumos energéticos da execução de interrogações, desenhámos e implementámos uma nova técnica que nos permite obter os consumos de energia para um qualquer processo de povoamento de um data warehouse, através da avaliação do consumo de cada um dos componentes utilizados na sua implementação utilizando uma ferramenta convencional. Neste artigo apresentamos a forma como fazemos tal avaliação, utilizando na demonstração da viabilidade da nossa proposta um processo de povoamento bastante típico em data warehouses – substituição encadeada de chaves operacionais -, que foi implementado através da ferramenta Kettle.