766 resultados para Celulose Oxidada
Resumo:
This article describes the preparation and characterization of the cellulose/ hydrated zirconium oxide composites prepared by conventional precipitation (PC) and homogeneous solution precipitation (PSH) methods. The composite obtained by the PC method was prepared by using an ammonia solution as the precipitating agent, while the composite obtained by the PSH method was prepared by using urea as the precipitating agent. The adsorption of dichromate ions on the composites was studied using factorial design 2³. The variables were: initial concentration, agitation time and mass of the composite. The data obtained agree better for the composite obtained by the PC method.
Resumo:
Dregs is an alkaline solid by-product generated in the cellulose manufacturing industry that could be used to correct soil acidity. The present study aimed to evaluate the chemical composition of this product and some of its properties. The dregs presented 354 g kg-1 of calcium, neutralization capacity of 80.3%, and pH 10.7, besides low concentration of sodium (10.2 g kg-1), lead (62.9 mg kg-1) and cadmium (5.6 mg kg-1). Thus, it is a product that can safely be used to increase the soil pH.
Resumo:
Mixtures of ethyl(hydroxyethyl)cellulose (EHEC) and Sodium Dodecyl Sulfate (SDS) were investigated using surface tension, conductivity and viscosity measurements in aqueous solutions. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration (cac) and saturation of the polymer by SDS (psp) were determined from the plots of surface tension and specific conductivity versus surfactant concentration. Through the final results we see that there was no specific link of polymer with the surfactant, implying therefore a phenomenon of only cooperative association.
Resumo:
Cellulose acetate polymeric membranes had been prepared by a procedure of two steps, combining the method of phase inversion and the technique of hydrolysis-deposition. The first step was the preparation of the membrane, and together was organomodified with tetraethylortosilicate and 3-aminopropyltrietoxysilane. Parameters that exert influence in the complexation of the metallic ion, as pH, time of complexation, metal concentration, had been studied in laboratory using tests of metal removal. The membranes had presented resistance mechanics and reactivity to cations, being able to be an alternative for the removal, daily pay-concentration or in the study of the lability of metals complexed.
Resumo:
In this study cellulose acetate butyrate (CAB) and carboxymehtylcellulose acetate butyrate (CMCAB) films adsorbed onto silicon wafers were characterized by means of ellipsometry, atomic force microscopy (AFM), sum frequency generation spectroscopy (SFG) and contact angle measurements. The adsorption behavior of lysozyme (LIS) or bovine serum albumin (BSA) onto CAB and CMCAB films was investigated. The amounts of adsorbed LIS or BSA onto CMCAB films were more pronounced than those onto CAB films due to the presence of carboxymethyl group in the CMCAB structure. Besides, the adsorption of BSA molecules on CMCAB films was more favored than that of LIS molecules. Antimicrobial effect of LIS bound to CAB or CMCAB layers was evaluated using Micrococcus luteus as substrate.
Resumo:
Cellulose acetate produced from mango seed fibers cellulose was used as a matrix for preparation of microparticles empty and load with acetaminophen (Paracetamol) in order to evaluate the incorporation of an active agent during the formation of microparticles. The microparticles are characterized by Fourier Transformed Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM). The incorporation of paracetamol can be confirmed by the change in value of glass transition temperature (Tg). The formation of microparticles spherical was observed by SEM and showed an average diameter of 1.010 and 0.950 mm for empty and load microparticles respectively.
Resumo:
In this work, the interactions between the non-ionic polymer of ethyl(hydroxyethyl)cellulose (EHEC) and mixed anionic surfactant sodium dodecanoate (SDoD)-sodium decanoate (SDeC) in aqueous media, at pH 9.2 (20 mM borate/NaOH buffer) were investigated by electric conductivity and light transmittance measurements at 25 ºC. The parameters of the surfactant to polymer association processes such as the critical aggregation concentration and saturation of the polymer by surfactants were determined from plots of specific conductivity vs total surfactant concentration, [surfactant]tot = [SDoD] + [SDeC]. Through the results was not observed a specific link of polymer with the surfactant, implying therefore a phenomenon only cooperative association.
Resumo:
This study was carried out to synthesize, characterize and evaluate the application of mesoestruturated catalysts MCM-41, 5%MoO3-MCM-41 and 5%NiO-MCM-41 in the hydrolysis of microcrystalline cellulose. XRD results indicate that the phase of mesoporous MCM-41 was obtained and that the introduction of metal oxides did not affect this mesoporous phase. About the heterogeneous hydrolysis reaction, it was observed that the increase in temperature results in a higher concentration of glucose and the catalyst 5%MoO3-MCM-41 provides the highest concentrations of glucose.
Resumo:
The DGT technique allows one to measure quantitatively free and labile metal species in aquatic systems. Nevertheless, for this approach, knowledge is required of the diffusion coefficients of the analytes in a diffusive layer. In this study, the diffusion coefficients of Hg(II), As(III), Mn(II), Mg(II), Cu(II), Cd(II) were determined in agarose gel and those of Ba(II), Cd(II), Cu(II), Mg(II), Mn(II) e Zn(II) in cellulose acetate membranes. These materials presented good performance and the reported results can be used as a data base for further DGT studies.
Resumo:
Cellulose acetates (CA) with different degrees of acetylation were synthesized from cellulose extracted from corn stover. Membranes were prepared for the ultrafiltration process with pure polymers and blend form of CA utilizing a dioxane/acetone system. The membranes were characterized according to their transport properties. The blend form materials presented the best results for application in ultrafiltration experiments. M-TAC/DAC (corn stover triacetate and diacetate) and M-TAC/DAC-Rho (corn stover triacetate and Rhodia diacetate) presented rejection to egg albumin protein of 87.39% and 80.50%, respectively. Thus, MWCO of 45 kDa was determined for these materials.
Resumo:
This review reports the preparation and characterization of bionanocomposites based on biodegradable polymers reinforced with cellulose nanocrystals (CNC) described in the literature. The outstanding potential of cellulose nanocrystals as reinforcement fillers of biodegradable polymers is presented with an emphasis on the solution casting process, which is an appropriate method to investigate the physico-chemical effects of the incorporation of CNC into the polymeric matrices. Besides solution casting, other small scale methods such as electrospinning and layer-by-layer are also covered.
Resumo:
The aim of this study was to produce membranes using the adapted cuprammonium method. The cellulose utilized was obtained from recycled agroindustrial residues: sugarcane bagasse, corn stover and soybean hulls. The levels of Cu (II) ions in regenerated cellulose membranes produced with cellulose from bagasse, corn stover and soybean hulls were 0.0236 wt%, 0.0255 wt% and 0.0268 wt%, respectively. These levels were approximately 15 times lower than those observed in previous studies (0.3634 wt%). Cellular viability data show that membranes produced from bagasse cellulose do not present toxicity to the cellular cultures studied. These results demonstrate an evolution in production of regenerated cellulose membranes from agroindustrial residues mainly due to a decrease in the Cu (II) ions level, showing the possibility of application of these systems with improved membranes processing.
Resumo:
Bacterial cellulose produced from Gluconacetobacter xilinus was used to produce cellulose nanocrystals by sulfuric acid hydrolysis. Hydrolysis was performed with 64% sulfuric acid at 50 ºC with the hydrolysis time ranging between 5 and 90 min. The production of nanocrystals was observed to have size distributions that were dependent on hydrolysis times up to 10 min, after which time the suspensions showed distributions closer in size. Results from thermal analysis and X-ray diffraction showed that the amorphous cellulose was removed, leaving only the crystalline portion. Self-supported films were formed from the suspension of nanocrystals and had iridescence characteristics. The films were characterized by microscopy measures and specular reflectance.
Resumo:
O presente trabalho discute os recentes avanços na biossíntese e na produção de celulose bacteriana (CB) pela gram-negativa, aeróbia e aceto-ácida Gluconacetobacter. xylinus. A CB se difere de seu par vegetal, principalmente devido ao seu caráter de fibras nanométricas, contra o caráter micrométrico da vegetal, são extruídas através da parede celular de G. xylinus, com isso sua estrutura macroscópica é mecanicamente e fisicamente mais resistente, abrindo grandes oportunidades de aplicações tecnológicas e biológicas, muito além das obtidas pela celulose vegetal. O desafio atual está no aumento da produção de CB, que se debruça num maior entendimento de sua biossíntese para que seja possível uma posterior manipulação genético-bioquímica oriundas do recente avanço na biologia molecular e nos bioprocessos. São relacionados trabalhos utilizando a CB como base para produção de compósitos como também o que a está sendo feito de mais atual com este material biológico.