1000 resultados para Carbon dioxide lasers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of my thesis project was to assess the impact of elevated ozone (O3) and carbon dioxide (CO2) on the growth, competition and community of meadow plants in northern Europe. The thesis project consisted of three separate O3 and CO2 exposure experiments that were conducted as open-top-chamber (OTC) studies at Jokioinen, SW Finland, and a smaller-scale experiment with different availabilities of resources in greenhouses in Helsinki. The OTC experiments included a competition experiment with two- and three-wise interactions, a mesocosm-scale meadow community with a large number of species, and a pot experiment that assessed intraspecific differences of Centaurea jacea ecotypes. The studied lowland hay meadow proved to be an O3-sensitive biotope, as the O3 concentrations used (40-50 ppb) were moderate, and yet, six out of nine species (Campanula rotundifolia, Centaurea jacea, Fragaria vesca, Ranunculus acris, Trifolium medium, Vicia cracca) showed either significant reductions in biomass or reproductive development, visible O3 injury or any two as a response to elevated O3. The plant species and ecotypes exhibited large intra- and interspecific variation in their response to O3, but O3 and CO2 concentrations did not cause changes in their interspecific competition or in community composition. However, the largest O3-induced growth reductions were seen in the least abundant species (C. rotundifolia and F. vesca), which may indicate O3-induced suppression of weak competitors. The overall effects of CO2 were relatively small and mainly restricted to individual species and several measured variables. Based on the present studies, most of the deleterious effects of tropospheric O3 are not diminished by a moderate increase in CO2 under low N availability, and variation exists between different species and variables. The present study indicates that the growth of several herb species decreases with increasing atmospheric O3 concentrations, and that these changes may pose a threat to the biodiversity of meadows. Ozone-induced reductions in the total community biomass production and N pool are likely to have important consequences for the nutrient cycling of the ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solubilities of two fatty acids, namely hexadecanoic acid (palmitic acid) and octadecanoic acid (stearic acid) in supercritical carbon dioxide (SCCO2), were determined at T = (328 and 338) K from 12.8 MPa to 22.6 MPa. Three models, namely a thermodynamic model based on the Peng-Robinson equation of state with Kwak and Mansoori mixing rules, a model based on dilute solution theory proposed by Mendez-Santiago and Teja and a new reformulated Chrastil equation model, were used to correlate the solubilities. In all the models, the correlation constants are temperature independent. All the models successfully correlated the experimental results for the solubilities of hexadecanoic acid within 3%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solubility of a drug, n-(4-ethoxyphenyl)ethanamide (phenacetin), in supercritical carbon dioxide was determined by a Saturation method at (308, 318, and 328) K from (9 to 19) MPa. The Solubilities in mole fraction of n-(4-ethoxyphenyl)ethanamide in supercritical carbon dioxide were in the range of 1.29.10(-5) to 2.88.10(-5), 1.13.10(-5) to 3.65.10(-5), and 0.91.10(-5) to 4.28.10(-5) at (308, 3 18, and 328) K, respectively. The solubility data were correlated with the Peng-Robinson equation of state models and the Mendez-Santiago and Teja model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reducing carbon dioxide (CO2) to hydrocarbon fuel with solar energy is significant for high-density solar energy storage and carbon balance. In this work, single palladium/platinum (Pd/Pt) atoms supported on graphitic carbon nitride (g-C3N4), i.e. Pd/g-C3N4 and Pt/g-C3N4, acting as photocatalysts for CO2 reduction were investigated by density function theory (DFT) calcu-lations for the first time. During CO2 reduction, the individual metal atoms function as the active sites, while g-C3N4 provides the source of hydrogen (H*) from hydrogen evolution reaction. The complete, as-designed photocatalysts exhibit excellent activity in CO2 reduction. HCOOH is the preferred product of CO2 reduction on the Pd/g-C3N4 catalyst with a rate-determining barrier of 0.66 eV, while the Pt/g-C3N4 catalyst prefers to reduce CO2 to CH4 with a rate-determining barrier of 1.16 eV. In addition, depositing atom catalysts on g-C3N4 significantly enhances the visible light absorption, rendering them ideal for visible light reduction of CO2. Our findings open a new avenue of CO2 reduction for renewable energy supply.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supercritical processes are gaining importance in the last few years in the food, environmental and pharmaceutical product processing. The design of any supercritical process needs accurate experimental data on solubilities of solids in the supercritical fluids (SCFs). The empirical equations are quite successful in correlating the solubilities of solid compounds in SCF both in the presence and absence of cosolvents. In this work, existing solvate complex models are discussed and a new set of empirical equations is proposed. These equations correlate the solubilities of solids in supercritical carbon dioxide (both in the presence and absence of cosolvents) as a function of temperature, density of supercritical carbon dioxide and the mole fraction of cosolvent. The accuracy of the proposed models was evaluated by correlating 15 binary and 18 ternary systems. The proposed models provided the best overall correlations. (C) 2009 Elsevier BA/. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The esterification of propionic acid was investigated using three different alcohols, namely, isopropyl alcohol, isobutyl alcohol, and isoamyl alcohol. The variation of conversion with time for the synthesis of isoamyl propionate was investigated in the presence of five enzymes. Novozym 435 showed the highest activity, and this was used as the enzyme for investigating the various parameters that influence the esterification reaction. The Ping-Pong Bi-Bi model with inhibition by both acid and alcohol was used to model the experimental data and determine the kinetics of the esterification reaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation of C4 dicarboxylic acids in Plasmodium berghei by carbon dioxide fixation reaction has been demonstrated by the use of labeled NaH14CO3. The reactions require glucose, which may be required not only as an energy source but also to contribute to the formation of pyruvate in the process of carbon dioxide fixation. Intracellular concentration of pyruvate may play an important role in the metabolism of P. berghei; an increased intracellular level of pyruvate seems to be a prerequisite before some of these reactions could be detected. The distribution of the label indicates extensive randomization of amino acids and suggests an extensive cycling of the amino acid and organic acid pools of the parasites. This investigation formed part of the thesis submitted in 1965 for the doctoral degree at the Indian Institute of Science, Bangalore 12, India, and was supported in part by the Council of Scientific and Industrial Research, India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increase in atmospheric carbon dioxide (CO2) concentration influences climate both directly through its radiative effect (i.e., trapping longwave radiation) and indirectly through its physiological effect (i.e., reducing transpiration of land plants). Here we compare the climate response to radiative and physiological effects of increased CO2 using the National Center for Atmospheric Research (NCAR) coupled Community Land and Community Atmosphere Model. In response to a doubling of CO2, the radiative effect of CO2 causes mean surface air temperature over land to increase by 2.86 ± 0.02 K (± 1 standard error), whereas the physiological effects of CO2 on land plants alone causes air temperature over land to increase by 0.42 ± 0.02 K. Combined, these two effects cause a land surface warming of 3.33 ± 0.03 K. The radiative effect of doubling CO2 increases global runoff by 5.2 ± 0.6%, primarily by increasing precipitation over the continents. The physiological effect increases runoff by 8.4 ± 0.6%, primarily by diminishing evapotranspiration from the continents. Combined, these two effects cause a 14.9 ± 0.7% increase in runoff. Relative humidity remains roughly constant in response to CO2-radiative forcing, whereas relative humidity over land decreases in response to CO2-physiological forcing as a result of reduced plant transpiration. Our study points to an emerging consensus that the physiological effects of increasing atmospheric CO2 on land plants will increase global warming beyond that caused by the radiative effects of CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiesel was synthesized in supercritical fluids by two routes: non-catalytically in supercritical alcohols and by enzyme catalysis in supercritical carbon dioxide. Two oils, sesame oil and mustard oil, and two alcohols, methanol and ethanol, were used for the synthesis. Complete conversion was observed for synthesis in supercritical alcohols whereas only a maximum of 70% conversion was observed for the enzymatic synthesis in supercritical carbon dioxide. For the synthesis in supercritical alcohols, the activation energies and pseudo-first order rate constants were determined. For the reactions in supercritical carbon dioxide, a mechanism based on ping pong bi-bi was proposed and the kinetic parameters were determined. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equilibrium solubility of a pharmaceutical compound. 1,5-dimethy1-2-phenyl-4-propan-2-ylpyrazol-3-one (propyphenazone, isopropylantipyrine) in supercritical carbon dioxide (SCCO2) was experimentally determined by a saturation method at 308, 318 and 328 K. over the pressure range of 9.0-19.0 MPa. The solubility data satisfied the self-consistency test, proposed by Mendez-Santiago and Teja. A new association model was derived to correlate the solubilities of pharmaceutical compounds in SCCO2. Solubility data from 54 different pharmaceutical compounds including steroids, antibiotics, anti-inflammatory, antioxidants, statins and specific functional drugs were collected from literature. The model successfully correlated the experimental results for the solubilities of all these compounds in SCCO2 within 12% AARD. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lakes serve as sites for terrestrially fixed carbon to be remineralized and transferred back to the atmosphere. Their role in regional carbon cycling is especially important in the Boreal Zone, where lakes can cover up to 20% of the land area. Boreal lakes are often characterized by the presence of a brown water colour, which implies high levels of dissolved organic carbon from the surrounding terrestrial ecosystem, but the load of inorganic carbon from the catchment is largely unknown. Organic carbon is transformed to methane (CH4) and carbon dioxide (CO2) in biological processes that result in lake water gas concentrations that increase above atmospheric equilibrium, thus making boreal lakes as sources of these important greenhouse gases. However, flux estimates are often based on sporadic sampling and modelling and actual flux measurements are scarce. Thus, the detailed temporal flux dynamics of greenhouse gases are still largely unknown. ----- One aim here was to reveal the natural dynamics of CH4 and CO2 concentrations and fluxes in a small boreal lake. The other aim was to test the applicability of a measuring technique for CO2 flux, i.e. the eddy covariance (EC) technique, and a computational method for estimation of primary production and community respiration, both commonly used in terrestrial research, in this lake. Continuous surface water CO2 concentration measurements, also needed in free-water applications to estimate primary production and community respiration, were used over two open water periods in a study of CO2 concentration dynamics. Traditional methods were also used to measure gas concentration and fluxes. The study lake, Valkea-Kotinen, is a small, humic, headwater lake within an old-growth forest catchment with no local anthropogenic disturbance and thus possible changes in gas dynamics reflect the natural variability in lake ecosystems. CH4 accumulated under the ice and in the hypolimnion during summer stratification. The surface water CH4 concentration was always above atmospheric equilibrium and thus the lake was a continuous source of CH4 to the atmosphere. However, the annual CH4 fluxes were small, i.e. 0.11 mol m-2 yr-1, and the timing of fluxes differed from that of other published estimates. The highest fluxes are usually measured in spring after ice melt but in Lake Valkea-Kotinen CH4 was effectively oxidised in spring and highest effluxes occurred in autumn after summer stratification period. CO2 also accumulated under the ice and the hypolimnetic CO2 concentration increased steadily during stratification period. The surface water CO2 concentration was highest in spring and in autumn, whereas during the stable stratification it was sometimes under atmospheric equilibrium. It showed diel, daily and seasonal variation; the diel cycle was clearly driven by light and thus reflected the metabolism of the lacustrine ecosystem. However, the diel cycle was sometimes blurred by injection of hypolimnetic water rich in CO2 and the surface water CO2 concentration was thus controlled by stratification dynamics. The highest CO2 fluxes were measured in spring, autumn and during those hypolimnetic injections causing bursts of CO2 comparable with the spring and autumn fluxes. The annual fluxes averaged 77 (±11 SD) g C m-2 yr-1. In estimating the importance of the lake in recycling terrestrial carbon, the flux was normalized to the catchment area and this normalized flux was compared with net ecosystem production estimates of -50 to 200 g C m-2 yr-1 from unmanaged forests in corresponding temperature and precipitation regimes in the literature. Within this range the flux of Lake Valkea-Kotinen yielded from the increase in source of the surrounding forest by 20% to decrease in sink by 5%. The free water approach gave primary production and community respiration estimates of 5- and 16-fold, respectively, compared with traditional bottle incubations during a 5-day testing period in autumn. The results are in parallel with findings in the literature. Both methods adopted from the terrestrial community also proved useful in lake studies. A large percentage of the EC data was rejected, due to the unfulfilled prerequisites of the method. However, the amount of data accepted remained large compared with what would be feasible with traditional methods. Use of the EC method revealed underestimation of the widely used gas exchange model and suggests simultaneous measurements of actual turbulence at the water surface with comparison of the different gas flux methods to revise the parameterization of the gas transfer velocity used in the models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. Peat surface CO2 emission, groundwater table depth and peat temperature were monitored for two years along transects in an Acacia plantation on thick tropical peat (>4 m) in Sumatra, Indonesia. A total of 2300 emission measurements were taken at 144 locations. The autotrophic root respiration component of the CO2 emission was separated from heterotrophic emissions caused by peat oxidation in three ways: (i) by comparing CO2 emissions within and beyond the tree rooting zone, (ii) by comparing CO2 emissions with and without peat trenching (i.e. cutting any roots remaining in the peat beyond the tree rooting zone), and (iii) by comparing CO2 emissions before and after Acacia tree harvesting. On average, the contribution of root respiration to daytime CO2 emission is 21 % along transects in mature tree stands. At locations 0.5 m from trees this is up to 80 % of the total emissions, but it is negligible at locations more than 1.3 m away. This means that CO2 emission measurements well away from trees are free of any root respiration contribution and thus represent only peat oxidation emission. We find daytime mean annual CO2 emission from peat oxidation alone of 94 t ha−1 yr−1 at a mean water table depth of 0.8 m, and a minimum emission value of 80 t ha−1 yr−1 after correction for the effect of diurnal temperature fluctuations, which resulted in a 14.5 % reduction of the daytime emission. There is a positive correlation between mean long-term water table depths and peat oxidation CO2 emission. However, no such relation is found for instantaneous emission/water table depth within transects and it is clear that factors other than water table depth also affect peat oxidation and total CO2 emissions. The increase in the temperature of the surface peat due to plantation development may explain over 50 % of peat oxidation emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The insertion reactions of zirconium(IV) n-butoxide and titanium(IV) n-butoxide with a heterocumulene like carbodiimide, carbon dioxide or phenyl isocyanate are compared. Both give an intermediate which carries out metathesis at elevated temperatures by inserting a second heterocumulene in a head-to-head fashion. The intermediate metallacycle extrudes a new heterocumulene, different from the two that have inserted leading to metathesis. As the reaction is reversible, catalytic metathesis is feasible. In stoichiometric reactions heterocumulene insertion, metathesis and metathesis cum insertion products are observed. However, catalytic amounts of the metal alkoxide primarily led to metathesis products. It is shown that zirconium alkoxides promote catalytic metathesis (isocyanates, carbon dioxide) more efficiently than the corresponding titanium alkoxide. The difference in the metathetic activity of these alkoxides has been explained by a computational study using model complexes Ti(OMe)(4) (1bTi) and Zr(OMe)(4) (1bZr). The computation was carried out at the B3LYP/LANL2DZ level of theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solubilities of benzene derivatives in supercritical carbon dioxide was determined by the saturation method over the pressure range (9.5 to 14.5) MPa. The solubilities were determined at (308 and 313) K for 1-chloro-2,4-dinitrobenzene and (308, 318, and 328) K for m-dinitrobenzene. At 308K, the solubility (in mole fraction) of 1-chloro-2,4-dinitrobenzene varied from (2.83 to 5.88).10(-3) while the solubility of m-dinitrobenzene increased from (2.05 to 5.54).10(-3) as the pressure increased from (9.5 to 14.5) MPa. However, the solubilities of both compounds decreased with increasing temperature. Models based on the solubility parameter and semiempirical models such as the Mendez-Santiago-Teja model, the Gordillo model, and the association model, were used to correlate the experimental solubility data for the benzene derivatives.