940 resultados para CYCLIC VOLTAMMETRY EXPERIMENTS
Resumo:
Cyclic Voltammetry experiments have been conducted on copper, iron, and chalcopyrite (CuFeS2) and compared to mass-balanced EH-pH Diagrams. Potassium ethyl xanthate (KEX) was added to solution and additional voltammetry experiments were performed to determine the surface chemistry reactions of flotation collector in solution with these minerals. The ultimate goal of this research was to investigate the possibility of xanthate chemisorption onto the chalcopyrite mineral surface. Results of the copper mineral testing confirm previous literature studies and corroborate published isotherm data. Results of the iron mineral testing showed changes in surface reactions with the addition of potassium ethyl xanthate to solution, however, these results were not attributed to the chemisorption of xanthate. Results of the chalcopyrite mineral testing indicate that the surface of the mineral oxidizes to chalcocite (Cu2S). In the presence of ethyl xanthate, small currents were observed and attributed to chemisorption of the potassium ethyl xanthate at the chalcocite surface, suggesting that the mineral's hydrophobicity is induced by more than dixanthogen. This phenomenon was found to be pH-dependent under a range of alkaline conditions (i.e., pH 7-12) at narrow potentials (i.e., 0 to -200mV).
Resumo:
Copper electrode can be used for determination of complexing compounds through complexation reactions between Cu(II) and the analites. In this work some studies with three compounds were performed: glycine (precursor of glyphosate synthesis), herbicide glyphosate and aminomethylphosphonic acid (main metabolite of glyphosate). These compounds are complexing agents for Cu electrodes. Through simple experiments (cyclic voltammetry and corrosion studies) the applicability of the copper electrode as electrochemical sensor for complexing compounds in flow systems was presented.
Resumo:
The combination of metallic phthalocyanines (MPcs) and biomolecules has been explored in the literature either as mimetic systems to investigate molecular interactions or as supporting layers to immobilize biomolecules. Here, Langmuir-Blodgett (LB) films containing the phospholipid dimyristoyl phosphatidic acid (DMPA) mixed either with iron phthalocyanine (FePc) or with lutetium bisphthalocyanine (LuPc(2)) were applied as ITO modified-electrodes in the detection of catechol using cyclic voltammetry. The mixed Langmuir films of FePc + DMPA and LuPc(2) + DMPA displayed surface-pressure isotherms with no evidence of molecular-level interactions. The Fourier Transform Infrared (FTIR) spectra of the multilayer LB films confirmed the lack of interaction between the components. The DMPA and the FePc molecules were found to be oriented perpendicularly to the substrate, while LuPc(2) molecules were randomly organized. The phospholipid matrix induced a remarkable electrocatalytic effect on the phthalocyanines; as a result the mixed LB films deposited on ITO could be used to detect catechol with detection limits of 4.30 x 10(-7) and 3.34 x 10(-7) M for FePc + DMPA and LuPc(2) + DMPA, respectively. Results from kinetics experiments revealed that ion diffusion dominated the response of the modified electrodes. The sensitivity was comparable to that of other non-enzymatic sensors, which is sufficient to detect catechol in the food industry. The higher stability of the electrochemical response of the LB films and the ability to control the molecular architecture are promising for further studies with incorporation of biomolecules.
Resumo:
The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.
Resumo:
An acetylcholinesterase (AchE) based amperometric biosensor was developed by immobilisation of the enzyme onto a self assembled modified gold electrode. Cyclic voltammetric experiments performed with the SAM-AchE biosensor in phosphate buffer solutions ( pH = 7.2) containing acetylthiocholine confirmed the formation of thiocholine and its electrochemical oxidation at E-p = 0.28 V vs Ag/AgCl. An indirect methodology involving the inhibition effect of parathion and carbaryl on the enzymatic reaction was developed and employed to measure both pesticides in spiked natural water and food samples without pre-treatment or pre-concentration steps. Values higher than 91-98.0% in recovery experiments indicated the feasibility of the proposed electroanalytical methodology to quantify both pesticides in water or food samples. HPLC measurements were also performed for comparison and confirmed the values measured amperometrically.
Resumo:
This work presents a study of the catalytic oxidation of ethanol on polycrystalline gold electrode in alkaline media. The investigation was carried out by means of chronoamperometry, cyclic voltammetry, and in situ FTIR spectroscopy. The main goal was to investigate the early stages of ethanol electrooxidation, namely at fairly low potentials (E = 600 mV vs. RHE) and for moderate reaction times (t < 300 s). Chronoamperometric experiments show a current increase accompanying the increasing in the ethanol concentration up to about 2 M and then a slight decrease at 3 M. Adsorbed CO has been observed as early as about 200 mV vs. RHE and indicates that the cleavage of the C-C bond might occur, probably to a small extent, at very low overpotentials during ethanol adsorption on gold surface. The amount of dissolved acetate ions produced during the chronoamperomentry was followed by the asymmetric stretching band at 1558 cm(-1) as a function of time, and found to increase linearly with time up to 300 s. This allowed estimating the reaction order of acetate formation with respect to ethanol concentration.
Resumo:
[Ru(3)O(CH(3)COO)(6)(pz)(CO)](6) is a cyclic hexamer species encompassing six triangular ruthenium cluster centers bridged by pyrazine ligands. The electronic communication among the cluster units strongly depends on their oxidation states, and has been successfully probed by means of cyclic voltammetry and UV-vis spectroelectrochemistry. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Pt-Sn electrocatalysts of different compositions were prepared and dispersed on carbon Vulcan XC-72 using the Pechini-Adams method. The catalysts were characterized by energy dispersive X-ray analysis and X-ray diffraction. The electrochemical properties of these electrode materials were also examined by cyclic voltammetry and chronoamperometric experiments in acid medium. The results showed that the presence of Sn greatly enhances the activity of Pt towards the electrooxidation of ethanol. Moreover, it contributes to reduce the amount of noble metal in the anode of direct alcohol fuel cells, which remains one of the challenges to make the technology of direct alcohol fuel cells possible. Electrolysis of ethanol solutions at 0.55 V vs. RHE allowed to determine by liquid chromatography acetaldehyde and acetic acid as the main reaction products. CO(2) was also analyzed after trapping it in a NaOH solution indicating that the cleavage of the C-C bond in the ethanol molecule did occur during the adsorption process. In situ IR reflectance spectroscopy helped to investigate in more details the reaction mechanism through the identification of the reaction products as well as the presence of some intermediate adsorbed species, such as linearly bonded carbon monoxide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
An electrochemical method is proposed for the determination of maltol in food. Microwave-assisted extraction procedures were developed to assist sample pre-treating steps. Experiments carried out in cyclic voltammetry showed an irreversible and adsorption controlled reduction of maltol. A cathodic peak was observed at -1.0 V for a Hanging Mercury Drop Electrode versus an AgCl/Ag (in saturated KCl), and the peak potential was pH independent. Square wave voltammetric procedures were selected to plot calibration curves. These procedures were carried out with the optimum conditions: pH 6.5; frequency 50 Hz; deposition potential 0.6 V; and deposition time 10 s. A linear behaviour was observed within 5.0 × 10-8 and 3.5 × 10-7 M. The proposed method was applied to the analysis of cakes, and results were compared with those obtained by an independent method. The voltammetric procedure was proven suitable for the analysis of cakes and provided environmental and economical advantages, including reduced toxicity and volume of effluents and decreased consumption of reagents.
Resumo:
This work describes an electrochemical and quantum chemical investigation of the fipronil insecticide. Cyclic voltammetry (CV) and square wave voltammetry (SWV) experiments were performed over a graphite-polyurethane (GPU) composite electrode. The fipronil molecule presents an one?electron irreversible oxidation reaction. Profiting the SWV signal a square wave stripping voltammetry (SWSV) procedure to determine the fipronil molecule in a 0.10 mol L-1 Britton-Robinson buffer solution, pH 8.0 was developed with accumulation potential and time of 0.50 V and 120 s, respectively. The limits of detection and quantification were 0.80 and 2.67 ?g L-1, respectively. Recovery tests were performed in three natural waters samples with values ranging from 99.67 to 101.37%. Quantum chemical studies showed that the nitrogen atom of the pyrazole group is the most probable oxidation site of the fipronil molecule.
Resumo:
Työn tavoitteena oli tutkia eri mittausmenetelmillä metallipinnoitettujen elektrodien kulumista kulumiskokeiden aikana. Mittausmenetelminä olivat käytössä syklinen voltammetria, polarisaatiokäyrän määritys ja sähkökemiallinen impedanssispektrometria, jotka olivat offline-mittausmenetelmiä. Näiden menetelmien avulla pystyttiin seuraamaan yksittäisten elektrodien kulumista ajon aikana. Elektrodin pinnoitteen alkuaineiden pitoisuuksia tutkittiin myös elektronimikroskoopin röntgenspektrometrin avulla. Työn aikana tehdyissä kulumiskokeista havaittiin elektrodin kuluvan sitä nopeammin mitä suurempi on virrantiheys. Työssä tehtyjen elektronimikroskooppikokeiden avulla havaittiin, että harvinaisten metallien seostaminen pinnoitteeseen pidentää metallipinnoitetun elektrodin käyttöikää. Syklisen voltammetrian avulla pystyttiin seuraamaan elektrodin pinta-alan muuttumista ajon aikana. Työssä käytettyjen kulumiskokeiden avulla ei suoranaisesti pystytty määrittämään elektrodin jäljellä olevaa elinikää.
Resumo:
Among the copper sulphides, chalcopyrite (CuFeS2), covellite (CuS) and chalcocite (Cu2S) are the most important source of minerals for copper mining industry. The acknowledge of behaviour of these sulphides related with bacterial leaching process are essential for optimization procedures. Despite of its importance, covellite has not deserved much interest of researchers regarding this matter. In this work it was studied the oxidation of covellite by the chemolithotrophic bacterium Thiobacillus ferrooxidans by using electrochemical techniques, such as open circuit potentials with the time and cyclic voltammetry. The experiments were carried out in acid medium (pH 1.8), containing or not Fe2+ as additional energy source, and in different periods of incubation; chemical controls were run in parallel. The results showed that a sulphur layer is formed spontaneously due the acid attack, covering the sulphide in the initial phase of incubation, blocking the sulphide oxidation. However, the bacterium was capable to oxidize this sulphur layer. In the presence of Fe2+ as supplemental energy source, the corrosion process was facilitated, because ocurred an indirect oxidation of covellite by Fe3+, which was produced by T. ferrooxidans oxidation of the Fe2+ added in the medium.
Resumo:
Copper electrode can be used for determination of complexing compounds through complexation reactions between Cu(II) and the analites. In this work some studies with three compounds were performed: glycine (precursor of glyphosate synthesis), herbicide glyphosate and aminomethylphosphonic acid (main metabolite of glyphosate). These compounds are complexing agents for Cu electrodes. Through simple experiments (cyclic voltammetry and corrosion studies) the applicability of the copper electrode as electrochemical sensor for complexing compounds in flow systems was presented.
Resumo:
This paper presents a proposal for using recycled graphite electrodes obtained from exhausted commercial 1.5 V batteries and its application in electroanalysis. The electrode could be prepared by the students and applied in the simple didactic experiments suggested, such as determination of active electrode area, cyclic voltammetry and useful potential range (also called "potential window"), demonstration and effect of scan rate on cyclic voltammograms. The possibility of using the graphite electrode in quantitative analysis was also demonstrated using the ferricyanide/ferrocyanide reversible redox couple ([Fe(CN)6]3-/[Fe(CN)6]4-) as an electrochemical probe by the dependence of peak current with the analyte concentration and flow injection analysis with amperometric detection.
Resumo:
Interest in water treatment by electrochemical methods has grown in recent years. Electrochemical oxidation has been applied particularly successfully to degrade different organic pollutants and disinfect drinking water. This study summarizes the effectiveness of the electrochemical oxidation technique in inactivating different primary biofilm forming paper mill bacteria as well as sulphide and organic material in pulp and paper mill wastewater in laboratory scale batch experiments. Three different electrodes, borondoped diamond (BDD), mixed metal oxide (MMO) and PbO2, were employed as anodes. The impact on inactivation efficiency of parameters such as current density and initial pH or chloride concentration of synthetic paper machine water was studied. The electrochemical behaviour of the electrodes was investigated by cyclic voltammetry with MMO, BDD and PbO2 electrodes in synthetic paper mill water as also with MMO and stainless steel electrodes with biocides. Some suggestions on the formation of different oxidants and oxidation mechanisms were also presented during the treatment. Aerobic paper mill bacteria species (Deinococcus geothermalis, Pseudoxanthomonas taiwanensis and Meiothermus silvanus) were inactivated effectively (>2 log) at MMO electrodes by current density of 50 mA/cm2 and the time taken three minutes. Increasing current density and initial chloride concentration of paper mill water increased the inactivation rate of Deinococcus geothermalis. The inactivation order of different bacteria species was Meiothermus silvanus > Pseudoxanthomonas taiwanensis > Deinococcus geothermalis. It was observed that inactivation was mainly due to the electrochemically generated chlorine/hypochlorite from chloride present in the water and also residual disinfection by chlorine/hypochlorite occurred. In real paper mill effluent treatment sulphide oxidation was effective with all the different initial concentrations (almost 100% reduction, current density 42.9 mA/cm2) and also anaerobic bacteria inactivation was observed (almost 90% reduction by chloride concentration of 164 mg/L and current density of 42.9 mA/cm2 in five minutes). Organic material removal was not as effective when comparing with other tested techniques, probably due to the relatively low treatment times. Cyclic voltammograms in synthetic paper mill water with stainless steel electrode showed that H2O2 could be degraded to radicals during the cathodic runs. This emphasises strong potential of combined electrochemical treatment with this biocide in bacteria inactivation in paper mill environments.