961 resultados para CTX-M-15-PRODUCING STRAINS
Resumo:
Several cyanobacterial genera produce the hepatotoxins, microcystins. Microcystins are produced only in cells that have microcystin synthetase gene (mcy) clusters, which encode enzyme complexes involved in microcystin biosynthesis. Microcystin-producing and nonmicrocystin-producing genotypes of single cyanobacterial genus may occur simultaneously in situ. Previously, the effects of environmental factors on the growth and microcystin production of cyanobacteria have mainly been studied by means of isolated cyanobacteria cultures in the laboratory. Studies in the field have been difficult, owing to the lack of methods to identify and quantify the different genotypes. In this study, genus-specific microcystin synthetase E (mcyE) gene primers were designed and a method to identify and quantify the mcyE copy numbers was developed and used in situ. Microcystis and Anabaena mcyE genes were observed in two Finnish lakes. Microcystis appeared to be the most abundant microcystin producer in Lake Tuusulanjärvi and in one basin of Lake Hiidenvesi. Because the most potent microcystin-producing genus of a lake can be identified, it will be possible in the future to design genus-targeted strategies for lake restoration. Effects of P and N concentrations on the biomass of microcystin-producing and nonmicrocystin-producing Microcystis strains and an Anabaena strain were studied in cultures. P and N concentrations and their combined effect increased cyanobacterial biomass of all Microcystis strains. The biomass of microcystin-producing Microcystis was higher than that of nonmicrocystin-producing strains at high nutrient concentrations. The P concentration increased Anabaena biomass, but the effect of N concentration was statistically insignificant for growth yield, probably due to the ability of the genus to fix molecular N2. P and N concentrations and combined nutrients caused an increase in cellular microcystin concentrations of the Microcystis strain cultivated in chemostat cultures. Cyanobacteria are able to hydrolyse nutrients from organic matter through extracellular enzyme activities. Leucine aminopeptidase (LAP) activity was observed in an axenic N2-fixing Anabaena strain grown in batch cultures. The P concentration caused a statistically significant increase in LAP activity, whereas the effect of N concentration was insignificant. The highest LAP activities were observed in the most eutrophic basins of Lake Hiidenvesi. LAP activity probably originated mostly from attached heterotrophic bacteria and less from cyanobacteria.
Resumo:
Bacteria growing in paper machines can cause several problems. Biofilms detaching from paper machine surfaces may lead to holes and spots in the end product or even break the paper web leading to expensive delays in production. Heat stable endospores will remain viable through the drying section of paper machine, increasing the microbial contamination of paper and board. Of the bacterial species regularly found in the end products, Bacillus cereus is the only one classified as a pathogen. Certain B. cereus strains produce cereulide, the toxin that causes vomiting disease in food poisonings connected to B. cereus. The first aim of this thesis was to identify harmful bacterial species colonizing paper machines and to assess the role of bacteria in the formation of end product defects. We developed quantitative PCR methods for detecting Meiothermus spp. and Pseudoxanthomonas taiwanensis. Using these methods I showed that Meiothermus spp. and Psx. taiwanensis are major biofoulers in paper machines. I was the first to be able to show the connection between end product defects and biofilms in the wet-end of paper machines. I isolated 48 strains of primary-biofilm forming bacteria from paper machines. Based on one of them, strain K4.1T, I described a novel bacterial genus Deinobacterium with Deinobacterium chartae as the type species. I measured the transfer of Bacillus cereus spores from packaging paper into food. To do this, we constructed a green fluorescent protein (GFP) labelled derivative of Bacillus thuringiensis and prepared paper containing spores of this strain. Chocolate and rice were the recipient foods when transfer of the labelled spores from the packaging paper to food was examined. I showed that only minority of the Bacillus cereus spores transferred into food from packaging paper and that this amount is very low compared to the amount of B. cereus naturally occurring in foods. Thus the microbiological risk caused by packaging papers is very low. Until now, the biological function of cereulide for the producer cell has remained unknown. I showed that B. cereus can use cereulide to take up K+ from environment where K+ is scarce: cereulide binds K+ ions outside the cell with high affinity and transports these ions across cell membrane into the cytoplasm. Externally added cereulide increased the growth rate of cereulide producing strains in medium where potassium was growth limiting. In addition, cereulide producing strains outcompeted cereulide non-producing B. cereus in potassium deficient environment, but not when the potassium concentration was high. I also showed that cereulide enhances biofilm formation of B. cereus.
Resumo:
A Escherichia coli enteroagregativa (EAEC) é um patotipo emergente e heterogêneo que causa a diarréia aguda ou persistente em indivíduos de diferentes faixas etárias e em pacientes imunocomprometidos. Além disso, EAEC é um dos principais agentes etiológicos da diarréia dos viajantes. O padrão de aderência agregativa de EAEC está associado ao plasmídeo de aderência agregativa (pAA). Genes presentes no plasmídeo e no cromossomo codificam proteínas envolvidas na secreção extracelular de fatores de virulência na superfície ou diretamente na célula hospedeira. A capacidade de produção de muco e biofilme, elaboração de toxinas, aderência e indução de inflamação intensa na mucosa intestinal são importantes características da patogenicidade de EAEC. Nesse estudo, determinamos o perfil genotípico de genes do sistema de secreção Tipo V (SST5) e sistema de secreção Tipo VI (SST6) em cepas de EAEC. Os genes do SST5 ocorreram com mais frequência que os genes do SST6. A presença de pelo menos um gene do SST5 foi detectada em 79% das cepas, enquanto que os genes relacionados ao SST6 foram detectados em apenas 42% das cepas analisadas. A produção de biofilme foi observada em teste quantitativo e verificamos que 67% das cepas produziram biofilme. No teste qualitativo, o tipo de biofilme que predomina é o biofilme moderado (11 cepas), seguido do biofilme forte (9 cepas) e do biofilme discreto (4 cepas). A presença ou ausência de genes do SST5 e SST6 não parece interferir com a capacidade de produção de biofilme, nem com o tipo de biofilme formado. Em ensaios de citotoxicidade, apenas 25% das cepas EAEC (sobrenadante) causaram redução significativa na viabilidade de células T84 avaliada pelo teste de redução com MTT. Nossos resultados mostram que as cepas EAEC isoladas de crianças com diarréia aguda ou de grupo controle são invasoras para células T84. Ao compararmos a capacidade invasora das cepas clinicas e controle, observamos que a média do índice de internalização obtido nas 15 cepas do grupo clinico foi de 5,7% 1,7 e para as 9 cepas do grupo controle foi de 2.4 % 0,7; entretanto essa diferença observada não foi estatisticamente significativa. Não foi possível correlacionar o perfil genotípico dos genes do SST5 e SST6 com o perfil fenotípico analisado (formação de biofilme, citotoxicidade e invasão).O que pode ser atribuído a heterogeneidade genotípica e fenotípica, uma característica relevante de cepas EAEC.
Resumo:
Para pesquisar o papel de ExoU no desencadeamento de resposta inflamatória nas vias aéreas, células epiteliais respiratórias humanas (CERs) da linhagem BEAS-2B foram tratadas com AA radiomarcado e infectadas com a cepa PA103 de P. aeruginosa, que secreta ExoU, e com os mutantes PA103exoU (com deleção do gene exoU), PA103ΔUT/exoU (com deleção de exoU e complementação com o gene funcional) e PA103UT/S142A (com deleção de exoU e complementação com gene com mutagênese sítio-específica no domínio catalítico da enzima). Após 1 hora, a liberação de AA pelas culturas infectadas com as cepas produtoras de ExoU foi significativamente superior à observada em culturas infectadas pelas cepas não-produtoras ou por células controle. O tratamento das bactérias com MAFP, um inibidor de PLA2, resultou em significativa redução na liberação de AA. Células infectadas pelas cepas PA103 e PA103ΔUT/exoU secretaram PGE2 e LTB4 em concentrações significativamente maiores que as secretadas por células infectadas pelas demais cepas ou não infectadas. O tratamento com o MAFP reduziu significativamente a secreção de PGE2. A análise, por citometria de fluxo, de células infectadas e não infectadas tratadas com anticorpo anti-COX-2 mostrou que o percentual de células infectadas por PA103 marcadas foi significativamente superior ao percentual encontrado em culturas controle. Nenhuma diferença foi observada quanto ao percentual de células marcadas em culturas infectadas por PA103ΔexoU. O tratamento das culturas com NS-398 (um inibidor seletivo de COX-2) resultou na diminuição significativa da concentração de PGE2, secretada por células infectadas com PA103, mas não por células infectadas com PA103ΔexoU ou por células controle. Corpúsculos lipídicos (CLs) são domínios citoplasmáticos ricos em COX-2 e outras enzimas responsáveis pelo metabolismo do AA, sede da produção de eicosanóides. Como células infectadas pelas cepas produtoras de ExoU liberam AA livre, formulamos a hipótese de que a maior produção de eicosanóides por estas células seria dependente da indução do aumento no número dos CLs. No entanto, a análise por citometria de fluxo de células tratadas com uma sonda lipofílica com afinidade com os CLs mostrou que o percentual de células marcadas em culturas infectadas pelas cepas produtoras de ExoU foi significativamente inferior ao percentual em culturas controle ou infectadas pelas outras 2 cepas bacterianas. O tratamento das células com MAFP inibiu significativamente a redução do percentual de células contendo CLs. A análise, por citometria de fluxo, de células controle ou infectadas tratadas simultaneamente com a sonda lipofílica e com o anticorpo anti-PGE2, mostrou, em células infectadas com PA103, a redução da mediana da intensidade de marcação com a sonda lipofílica e o aumento da mediana da intensidade de marcação com o anticorpo anti-PGE2. Nossa hipótese é que a presença de ExoU nas células infectadas com a cepa PA103 resulte no metabolismo de glicerofosfolipídios presente nos CLs levando à diminuição da afinidade dos CLs pela sonda lipofílica e à síntese local de PGE2.
Resumo:
本文主要研究了从造纸厂碱性土壤中筛选得到的,能够产生耐碱木聚糖酶的两株放线菌X24-14和X15-17。通过16 S rRNA基因序列分析并结合菌株的形态特征以及生理生化特性,初步认为菌株X15-17为拟诺卡氏菌属(Nocardiopsis)的一个潜在新种;菌株X24-14为纤维化纤维菌(Cellulosimicrobium cellulans)。 在此基础上探索了菌株X24-14和菌株X15-17所产木聚糖酶的基本酶学性质。研究发现,两株菌所产的木聚糖酶的耐碱性均较强: 1)菌株X24-14所产的木聚糖酶,在pH 4.2~9.4的范围内能维持较高的活力,pH 9.4条件下,仍能保持80%的酶活力;2)菌株X15-17所产的木聚糖酶在pH 4.0~9.0的范围内能维持较高的活力,pH 9.0条件下,仍能保持80%的酶活力;3)两株菌所产的木聚糖酶均具有较好的pH稳定性,在pH 2.0~11.0范围内稳定,pH 11.0、4 ℃条件下处理24 h仍具有75%的活力。 本文还重点研究了菌株X24-14在不同培养基成分及不同培养条件下的产酶情况,确定了其适宜的产酶条件。结果显示,菌株X24-14的最适碳源为麸皮;最适氮源为蛋白胨;最适产酶pH为pH 8.5。菌株X24-14适宜的产酶条件为:麸皮60 g/L,蛋白胨10 g/L,K2HPO4 7.0 g/L,pH 8.5,接种量为5%,37 ℃,200 r/min发酵培养108 h。 Two strains of actinomycetes, X24-14 and X15-17, which produced alkali-tolerant xylanase were screened from the soil samples collected from a pulp mill in china. Based on the morphological, physiochemical characteristics and 16S rRNA sequence, X24-14 was priminarily identified as cellulosimicrobium cellulans ; X15-17 was priminarily identified as a new species of Nocardiopsis. The investigation examined the enzyme activities which produced by X24-14 and X15-17 under different pH and different temperatures. The results showed that : 1)The xylanase from X24-14 had characteristic of alkali-tolerance: It remains 80% relative activity at pH ranges between pH 4.2 and pH 9.4 under 50℃. 2)The xylanase from X15-17 also showed characteristic of alkali-tolerance, it remains 80% relative activity at pH ranges between pH 4.0and pH 9.0 under 50℃. 3)The xylanase from the two strains showed alkali-stable characteristics. They were stable at pH ranges between pH 2.0 and pH 11.0, showing 75% of its maximal activity remaining under 24 hours of treatment at 4℃. We also studied the effect of different growth conditions: carbon source, nitrogen sources, inoculum size, and initial pH on the production of xylanase of strain X24-14. The results showed that :The optimal carbon source was wheat bran; The optima nitrogen source was peptone; The maximum xylanase activity was achieved in the medium containing 60 g/L wheat bran, 10 g/L peptone, 7 g/L K2HPO4, inoculum size 5% and pH 8.5, under 37℃ in 108 h.
Resumo:
Bacteria isolated from a highly toxic sample of gastropod Nassarius semiplicatus in Lianyungang, Jiangsu Province in July 2007, were studied to probe into the relationship between bacteria and toxicity of nassariid gastropod. The toxicity of the gastropod sample was 2 x 10(2) mouse unit (MU) Per gram Of tissue (wet weight). High concentration of tetrodotoxin (TTX) and its analogues (TTXs) were found in the digestive gland and muscle of the gastropod, using high performance liquid chromatography coupled with mass chromatography (LC-MS). Bacterial strains isolated from the digestive gland were cultured and screened for TTX with a competitive ELISA method. Tetrodotoxin was detected in a proportion of bacterial strains, but the toxin content was low. Partial 16S ribosomal DNA (rDNA) of the TTX-producing strains was then sequenced and compared with those published in the GenBank to tentatively identify the toxic strains. It was found that most of the toxic strains were closely affiliated with genus Vibrio, and the others were related to genus Shewanella, Marinomonas, Tenacibaculum and Aeromonas. These findings suggest that tetrodotoxin-producing bacteria might play an important role in tetrodotoxin accumulation/production in N. semiplicatus. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Tese de Doutoramento em Biologia apresentada à Faculdade de Ciências da Universidade do Porto, 2015.
Resumo:
Succinic acid (SA) is a highly versatile building block that is used in a wide range of industrial applications. The biological production of succinic acid has emerged in the last years as an efficient alternative to the chemical production based on fossil fuels. However, in order to fully replace the competing petro-based chemical process from which it has been produced so far, some challenges remain to be surpassed. In particular, one main obstacle would be to reduce its production costs, mostly associated to the use of refined sugars. The present work is focused on the development of a sustainable and cost-e↵ective microbial production process based on cheap and renewable resources, such as agroindustrial wastes. Hence, glycerol and carob pods were identified as promising feedstocks and used as inexpensive carbon sources for the bioproduction of succinic acid by Actinobacillus succinogenes 130Z, one of the best naturally producing strains. Even though glycerol is a highly available carbon source, as by-product of biodiesel production, its consumption by A. succinogenes is impaired due to a redox imbalance during cell growth. However, the use of an external electron acceptor such as dimethylsulfoxide (DMSO) may improve glycerol metabolism and succinic acid production by this strain. As such, DMSO was tested as a co-substrate for glycerol consumption and concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by this biocatalyst. Aiming at obtaining higher succinic acid yield and production rate, batch and fed-batch experiments were performed under controlled cultivation conditions. Batch experiments resulted in a succinic acid yield on glycerol of 0.95 g SA/g GLY and a production rate of 2.13 g/L.h, with residual production of acetic and formic acids. In fed-batch experiment, the SA production rate reached 2.31 g/L.h, the highest value reported in the literature for A. succinogenes using glycerol as carbon source. DMSO dramatically improved the conversion of glycerol by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Carob pods, highly available in Portugal as a residue from the locust bean gum industry, contain a significant amount of fermentable sugars such as sucrose, glucose and fructose and were also used as substrate for succinic acid production. Sugar extraction from raw and roasted carobs was optimized varying solid/water ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Kinetic studies of glucose, fructose and sucrose consumption by A. succinogenes as individual carbon sources till 30 g/L were first determined to assess possible metabolic diferences. Results showed no significant diferences related to sugar consumption and SA production between the diferent sugars. Carob pods water extracts were then used as carbon source during controlled batch cultivations. (...)
Resumo:
In the current study, a novel non-acetone forming butanol and ethanol producer Was isolated and identified. Based on the 16s rDNA sequence BLAST and phylogenetic analyses, it was found to have high similarity with the reported hydrogen producing strains of Clostridium sporogenes. Biochemical studies revealed that it is lipase and protease positive. The lipolytic and proteolytic properties are the very important characteristics of Clostridium sporogenes. Sugar utilization profile studies were positive for glucose, saccharose, cellobiose and weakly positive result to xylose. This study demonstrated C. sporogenes BE01, an isolate from NIIST is having potential to compete with existing, well known butanol producers with the advantage of no acetone in the final solvent mixture. Rice straw hydrolysate is a potent source of substrate for butanol production by C. sporogenes BE01. Additional supplementation of vitamins and minerals were avoided by using rice straw hydrolysate as substrate. Its less growth, due to the inhibitors present in the hydrolysate and also inhibition by products resulted in less efficient conversion of sugars to butanol. Calcium carbonate played an important role in improving the butanol production, by providing the buffering action during fermentation and stimulating the electron transport mediators and redox reactions favoring butanol production. Its capability to produce acetic acid, butyric acid and hydrogen in significant quantities during butanol production adds value to the conversion process of lignocellulosic biomass to butanol. High cell density fermentation by immobilizing the cells on to ceramic particles improved the solvents and VFA production. Reduced sugar utilization from the concentrated hydrolysate could be due to accumulation of inhibitors in the hydrolysate during concentration. Two-stage fermentation was very efficient with immobilized cells and high conversions of sugars to solvents and VFAs were achieved. The information obtained from the study would be useful to develop a feasible technology for conversion of lignocellulosic biomass to biobutanol.
Resumo:
Producing projections of future crop yields requires careful thought about the appropriate use of atmosphere-ocean global climate model (AOGCM) simulations. Here we describe and demonstrate multiple methods for ‘calibrating’ climate projections using an ensemble of AOGCM simulations in a ‘perfect sibling’ framework. Crucially, this type of analysis assesses the ability of each calibration methodology to produce reliable estimates of future climate, which is not possible just using historical observations. This type of approach could be more widely adopted for assessing calibration methodologies for crop modelling. The calibration methods assessed include the commonly used ‘delta’ (change factor) and ‘nudging’ (bias correction) approaches. We focus on daily maximum temperature in summer over Europe for this idealised case study, but the methods can be generalised to other variables and other regions. The calibration methods, which are relatively easy to implement given appropriate observations, produce more robust projections of future daily maximum temperatures and heat stress than using raw model output. The choice over which calibration method to use will likely depend on the situation, but change factor approaches tend to perform best in our examples. Finally, we demonstrate that the uncertainty due to the choice of calibration methodology is a significant contributor to the total uncertainty in future climate projections for impact studies. We conclude that utilising a variety of calibration methods on output from a wide range of AOGCMs is essential to produce climate data that will ensure robust and reliable crop yield projections.
Resumo:
Feces of 70 diarrhoeic and 230 non-diarrhoeic domestic cats from Sao Paulo, Brazil were investigated for enteropathogenic (EPEC), enterohaemorrhagic (EHEC) and enterotoxigenic (ETEC) Escherichia coli types. While ETEC and EHEC strains were not found, 15 EPEC strains were isolated from 14 cats, of which 13 were non-diarrhoeic, and one diarrhoeic. None of 15 EPEC strains carried the bfpA gene or the EPEC adherence factor plasmid, indicating atypical EPEC types. The EPEC strains were heterogeneous with regard to intimin types, such as eae-theta (three strains), eae-kappa (n = 3), eae-alpha 1 (n = 2), eae-iota (n = 2), one eae-alpha 2, eae-beta 1 and eae-eta each, and two were not typeable. The majority of the EPEC isolates adhered to HEp-2 cells in a localized adherence-like pattern and were positive for fluorescence actin staining. The EPEC strains belonged to 12 different serotypes, including O111:H25 and O125:H6, which are known to be pathogens in humans. Multi locus sequence typing revealed a close genetic similarity between the O111:H25 and O125:H6 strains from cats, dogs and humans. Our results show that domestic cats are colonized by EPEC, including serotypes previously described as human pathogens. As these EPEC strains are also isolated from humans, a cycle of mutual infection by EPEC between cats and its households cannot be ruled out, though the transmission dynamics among the reservoirs are not yet understood clearly.
Resumo:
A S. Pullorum (SP) é muito semelhante à S. Gallinarum (SG), agentes da Pulorose e Tifo aviário, respectivamente, sendo que as duas enfermidades são responsáveis por perdas econômicas no setor avícola. SP e SG são de difícil diferenciação em procedimento laboratorial rotineiro, mas uma prova bioquímica muito utilizada na distinção das duas refere-se à capacidade de assimilar o aminoácido ornitina: SP descarboxila este aminoácido enquanto SG não. No entanto, o isolamento de cepas com comportamento bioquímico atípico, tem dificultado tal diferenciação. Um dos genes relacionados à assimilação do aminoácido ornitina, denomina-se gene speC, o qual está presente nos dois sorovares. Analisando 21 amostras de SP e 15 de SG com a utilização da PCR não foi possível realizar a diferenciação dos dois sorovares pois os fragmentos gerados eram idênticos. Posteriormente, com o uso da técnica de tratamento enzimático com a enzima de restrição Eco RI, foi possível observar que o padrão de bandas gerado em cada sorovar era diferente, mesmo quando amostras que apresentavam comportamento bioquímico atípico eram analisadas. Tal fato permitiu a padronização da técnica para ser utilizada na diferenciação entre os sorovares Pullorum e Gallinarum de maneira rápida e segura.
Resumo:
The obtaining of the oligosaccharides from chitosanase, has showed interest of the pharmaceutical area in the last years due their countless functional properties. Although, the great challenge founded out is how to keep a constant and efficient production. The alternative proposed by this present work was to study the viability to develop an integrated technology, with reduced costs. The strategy used was the obtaining of the oligomers through enzymatic hydrolysis using chitosanolitic enzymes obtained straight from the fermented broth, eliminating this way the phases involved in the enzymes purification. The two chitosanases producing strains chosen for the work, Paenibacillus chitinolyticus and Paenibacillus ehimensis, were evaluated according to the behavior in the culture medium with simple sugar and in relation to the pH medium variations. The culture medium for the chitosanases induction and production was developed through addition of soluble chitosan as carbon source. The soluble chitosan was obtained using hydrochloric acid solution 0.1 M and afterwards neutralization with NaOH 10 M. The enzymatic complexes were obtained from induction process in culture medium with 0.2% of soluble chitosan. The enzymes production was verified soon after the consumption of the simple sugars by the microorganisms and the maximum chitosanolitic activity obtained in the fermented broth by Paenibacillus chitinolyticus was 249 U.L-1 and by Paenibacillus ehimensis was 495U.L-1. These two enzymatic complexes showed stability when stored at 20°C for about 91 days. The enzymes in the fermented broth by Paenibacillus chitinolyticus, when exposed at temperature of 55°C and pH 6.0, where the activity is maximum, showed 50% lost of activity after 3 hours Meanwhile, for the complex produced by Paenibacillus ehimensis, after 6 days of exposure, it was detected 100% of the activity. The chito-oligosaccharides obtained by the hydrolysis of a 1% chitosan solution, using the enzymatic complex produced by Paenibacillus chitinolyticus showed larger quantity after 9 hours hydrolysis and using the complex produced by Paenibacillus ehimensis after 20 minutes was observed the chito-ligosacharides with polymerization degree between 3 and 6 units. Evaluating these results, it was verified that the production of chitosan-oligosaccharides is possible, using a simultaneous process
Resumo:
Várias amostras de solo do Brasil foram semeadas em placas de ágar e diversas cepas de actinomicetos produtoras de antibióticos antifúngicos foram isoladas. Foram desenvolvidos meios para eliciação da biossíntese dos antibióticos e métodos para determinação rápida do seu rendimento. Ao todo, foram isoladas 41 cepas de actinomicetos aeróbios produtoras de metabólitos antifúngicos. Destes, 11 (26,8%) eram macrolídeos tetraênicos, 13 (31,7%) macrolídeos pentaênicos, 1 (2,4%), macrolídeo oxopentaênico, 1 (2,4%) macrolídeo hexaênico e 6 (14,6%) macrolídeos heptaênicos. Os antibióticos antifúngicos produzidos pelas restantes 9 cepas ativas (21,9%) não eram poliênicos. Os poliênicos mais utilizados atualmente na clínica são do tipo tetraênico (nistatina) e heptaênico (anfotericina B). Um meio à base de leite de soja favoreceu extraordinariamente a eliciação da biossíntese de polienos por algumas cepas, enquanto que para outras não houve favorecimento e para outras foi prejudicial. Os rendimentos obtidos atingiram cerca de 6000 U de antibióticos poliênicos por mL.
Resumo:
Hemicelluloses are polysaccharides of low molecular weight containing 100 to 200 glycosidic residues. In plants, the xylans or the hemicelluloses are situated between the lignin and the collection of cellulose fibers underneath. The xylan is the most common hemicellulosic polysaccharide in cell walls of land plants, comprising a backbone of xylose residues linked by beta-1,4-glycosidic bonds. So, xylanolytic enzymes from microorganism have attracted a great deal of attention in the last decade, particularly because of their biotechnological characteristics in various industrial processes, related to food, feed, ethanol, pulp, and paper industries. A microbial screening of xylanase producer was carried out in Brazilian Cerrado area in Selviria city, Mato Grosso do Sul State, Brazil. About 50 bacterial strains and 15 fungal strains were isolated from soil sample at 35 A degrees C. Between these isolated microorganisms, a bacterium Lysinibacillus sp. and a fungus Neosartorya spinosa as good xylanase producers were identified. Based on identification processes, Lysinibacillus sp. is a new species and the xylanase production by this bacterial genus was not reported yet. Similarly, it has not reported about xylanase production from N. spinosa. The bacterial strain P5B1 identified as Lysinibacillus sp. was cultivated on submerged fermentation using as substrate xylan, wheat bran, corn straw, corncob, and sugar cane bagasse. Corn straw and wheat bran show a good xylanase activity after 72 h of fermentation. A fungus identified as N. spinosa (strain P2D16) was cultivated on solid-state fermentation using as substrate source wheat bran, wheat bran plus sawdust, corn straw, corncob, cassava bran, and sugar cane bagasse. Wheat bran and corncobs show the better xylanase production after 72 h of fermentation. Both crude xylanases were characterized and a bacterial xylanase shows optimum pH for enzyme activity at 6.0, whereas a fungal xylanase has optimum pH at 5.0-5.5. They were stable in the pH range 5.0-10.0 and 5.5-8.5 for bacterial and fungal xylanase, respectively. The optimum temperatures were 55C and 60 A degrees C for bacterial and fungal xylanase, respectively, and they were thermally stable up to 50 A degrees C.