872 resultados para COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Resumo:
Recently Adams and Bischof (1994) proposed a novel region growing algorithm for segmenting intensity images. The inputs to the algorithm are the intensity image and a set of seeds - individual points or connected components - that identify the individual regions to be segmented. The algorithm grows these seed regions until all of the image pixels have been assimilated. Unfortunately the algorithm is inherently dependent on the order of pixel processing. This means, for example, that raster order processing and anti-raster order processing do not, in general, lead to the same tessellation. In this paper we propose an improved seeded region growing algorithm that retains the advantages of the Adams and Bischof algorithm fast execution, robust segmentation, and no tuning parameters - but is pixel order independent. (C) 1997 Elsevier Science B.V.
Resumo:
A set of five tasks was designed to examine dynamic aspects of visual attention: selective attention to color, selective attention to pattern, dividing and switching attention between color and pattern, and selective attention to pattern with changing target. These varieties of visual attention were examined using the same set of stimuli under different instruction sets; thus differences between tasks cannot be attributed to differences in the perceptual features of the stimuli. ERP data are presented for each of these tasks. A within-task analysis of different stimulus types varying in similarity to the attended target feature revealed that an early frontal selection positivity (FSP) was evident in selective attention tasks, regardless of whether color was the attended feature. The scalp distribution of a later posterior selection negativity (SN) was affected by whether the attended feature was color or pattern. The SN was largely unaffected by dividing attention across color and pattern. A large widespread positivity was evident in most conditions, consisting of at least three subcomponents which were differentially affected by the attention conditions. These findings are discussed in relation to prior research and the time course of visual attention processes in the brain. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we describe a model of the human visual system (HVS) based on the wavelet transform. This model is largely based on a previously proposed model, but has a number of modifications that make it more amenable to potential integration into a wavelet based image compression scheme. These modifications include the use of a separable wavelet transform instead of the cortex transform, the application of a wavelet contrast sensitivity function (CSP), and a simplified definition of subband contrast that allows us to predict noise visibility directly from wavelet coefficients. Initially, we outline the luminance, frequency, and masking sensitivities of the HVS and discuss how these can be incorporated into the wavelet transform. We then outline a number of limitations of the wavelet transform as a model of the HVS, namely the lack of translational invariance and poor orientation sensitivity. In order to investigate the efficacy of this wavelet based model, a wavelet visible difference predictor (WVDP) is described. The WVDP is then used to predict visible differences between an original and compressed (or noisy) image. Results are presented to emphasize the limitations of commonly used measures of image quality and to demonstrate the performance of the WVDP, The paper concludes with suggestions on bow the WVDP can be used to determine a visually optimal quantization strategy for wavelet coefficients and produce a quantitative measure of image quality.
Resumo:
This paper presents the unique collection of additional features of Qu-Prolog, a variant of the Al programming language Prolog, and illustrates how they can be used for implementing DAI applications. By this we mean applications comprising communicating information servers, expert systems, or agents, with sophisticated reasoning capabilities and internal concurrency. Such an application exploits the key features of Qu-Prolog: support for the programming of sound non-clausal inference systems, multi-threading, and high level inter-thread message communication between Qu-Prolog query threads anywhere on the internet. The inter-thread communication uses email style symbolic names for threads, allowing easy construction of distributed applications using public names for threads. How threads react to received messages is specified by a disjunction of reaction rules which the thread periodically executes. A communications API allows smooth integration of components written in C, which to Qu-Prolog, look like remote query threads.
Resumo:
The new technologies for Knowledge Discovery from Databases (KDD) and data mining promise to bring new insights into a voluminous growing amount of biological data. KDD technology is complementary to laboratory experimentation and helps speed up biological research. This article contains an introduction to KDD, a review of data mining tools, and their biological applications. We discuss the domain concepts related to biological data and databases, as well as current KDD and data mining developments in biology.
Resumo:
Continuous-valued recurrent neural networks can learn mechanisms for processing context-free languages. The dynamics of such networks is usually based on damped oscillation around fixed points in state space and requires that the dynamical components are arranged in certain ways. It is shown that qualitatively similar dynamics with similar constraints hold for a(n)b(n)c(n), a context-sensitive language. The additional difficulty with a(n)b(n)c(n), compared with the context-free language a(n)b(n), consists of 'counting up' and 'counting down' letters simultaneously. The network solution is to oscillate in two principal dimensions, one for counting up and one for counting down. This study focuses on the dynamics employed by the sequential cascaded network, in contrast to the simple recurrent network, and the use of backpropagation through time. Found solutions generalize well beyond training data, however, learning is not reliable. The contribution of this study lies in demonstrating how the dynamics in recurrent neural networks that process context-free languages can also be employed in processing some context-sensitive languages (traditionally thought of as requiring additional computation resources). This continuity of mechanism between language classes contributes to our understanding of neural networks in modelling language learning and processing.
Resumo:
In this paper we show how to extend KEM, a tableau-like proof system for normal modal logic, in order to deal with classes of non-normal modal logics, such as monotonic and regular, in a uniform and modular way.
Resumo:
This paper is concerned with the use of scientific visualization methods for the analysis of feedforward neural networks (NNs). Inevitably, the kinds of data associated with the design and implementation of neural networks are of very high dimensionality, presenting a major challenge for visualization. A method is described using the well-known statistical technique of principal component analysis (PCA). This is found to be an effective and useful method of visualizing the learning trajectories of many learning algorithms such as back-propagation and can also be used to provide insight into the learning process and the nature of the error surface.
Resumo:
In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.
Resumo:
This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.
Resumo:
We discuss the expectation propagation (EP) algorithm for approximate Bayesian inference using a factorizing posterior approximation. For neural network models, we use a central limit theorem argument to make EP tractable when the number of parameters is large. For two types of models, we show that EP can achieve optimal generalization performance when data are drawn from a simple distribution.
Resumo:
This paper seeks to understand how software systems and organisations co-evolve in practice and how order emerges in the overall environment. Using a metaphor of timetable as a commons, we analyse the introduction of a novel academic scheduling system to demonstrate how Complex Adaptive Systems theory provides insight into the adaptive behaviour of the various actors and how their action is both a response to and a driver of co-evolution within the engagement.
Resumo:
Geospatial clustering must be designed in such a way that it takes into account the special features of geoinformation and the peculiar nature of geographical environments in order to successfully derive geospatially interesting global concentrations and localized excesses. This paper examines families of geospaital clustering recently proposed in the data mining community and identifies several features and issues especially important to geospatial clustering in data-rich environments.
Resumo:
Objective: The aim of this article is to propose an integrated framework for extracting and describing patterns of disorders from medical images using a combination of linear discriminant analysis and active contour models. Methods: A multivariate statistical methodology was first used to identify the most discriminating hyperplane separating two groups of images (from healthy controls and patients with schizophrenia) contained in the input data. After this, the present work makes explicit the differences found by the multivariate statistical method by subtracting the discriminant models of controls and patients, weighted by the pooled variance between the two groups. A variational level-set technique was used to segment clusters of these differences. We obtain a label of each anatomical change using the Talairach atlas. Results: In this work all the data was analysed simultaneously rather than assuming a priori regions of interest. As a consequence of this, by using active contour models, we were able to obtain regions of interest that were emergent from the data. The results were evaluated using, as gold standard, well-known facts about the neuroanatomical changes related to schizophrenia. Most of the items in the gold standard was covered in our result set. Conclusions: We argue that such investigation provides a suitable framework for characterising the high complexity of magnetic resonance images in schizophrenia as the results obtained indicate a high sensitivity rate with respect to the gold standard. (C) 2010 Elsevier B.V. All rights reserved.