979 resultados para COLLOIDAL SEMICONDUCTOR NANOCRYSTALS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we demonstrate that conductive atomic force microscopy (C-AFM) is a very powerful tool to investigate, at the nanoscale, metal-oxide-semiconductor structures with silicon nanocrystals (Si-nc) embedded in the gate oxide as memory devices. The high lateral resolution of this technique allows us to study extremely small areas ( ~ 300nm2) and, therefore, the electrical properties of a reduced number of Si-nc. C-AFM experiments have demonstrated that Si-nc enhance the gate oxide electrical conduction due to trap-assisted tunneling. On the other hand, Si-nc can act as trapping centers. The amount of charge stored in Si-nc has been estimated through the change induced in the barrier height measured from the I-V characteristics. The results show that only ~ 20% of the Si-nc are charged, demonstrating that the electrical behavior at the nanoscale is consistent with the macroscopic characterization.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Colloidal suspensions of tin oxide nanocrystals were synthesized at room temperature by the hydrolysis reaction of tin chloride (II), in an ethanolic solution. The coarsening kinetics of such nanocrystals was studied by submitting the as-prepared suspensions to hydrothermal treatments at temperatures of 100, 150 and 200 degrees C for periods between 60 and 12,000 min. Transmission electron microscopy (TEM) was used to characterize the samples (i.e. distribution of nanocrystal size, average particle radius and morphology). The results show that the usual Ostwald ripening coarsening mechanism does not fit well the experimental data, which is an indicative that this process is not significant for SnO2 nanocrystals, in the studied experimental conditions. The morphology evolution of the nanocrystals upon hydrothermal treatment indicates that growth by oriented attachment (OA) should be significant. A kinetic model that describes OA growth is successfully applied to fit the data. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on a temperature sensor based on the monitoring of the luminescence spectrum of CdSe/ZnS nanocrystals, dispersed in mineral oil and inserted into the core of a photonic crystal fiber. The high overlap between the pump light and the nanocrystals as well as the luminescence guiding provided by the fiber geometry resulted in relatively high luminescence powers and improved optical signal-to-noise ratio (OSNR). Also, both core end interfaces were sealed so as to generate a more stable and robust waveguide structure. Temperature sensitivity experiments indicated a 70 pm/degrees C spectral shift over the 5 degrees C to 90 degrees C range.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strong photoluminescent emission has been obtained from 3 nm PbS nanocrystals in aqueous colloidal solution, following treatment with CdS precursors. The observed emission can extend across the entire visible spectrum and usually includes a peak near 1.95 eV. We show that much of the visible emission results from absorption by higher-lying excited states above 3.0 eV with subsequent relaxation to and emission from states lying above the observed band-edge of the PbS nanocrystals. The fluorescent lifetimes for this emission are in the nanosecond regime, characteristic of exciton recombination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluorescence is a powerful tool in biological research, the relevance of which relies greatly on the availability of sensitive and selective fluorescent probes. Nanometer sized fluorescent semiconductor materials have attracted considerable attention in recent years due to the high luminescence intensity, low photobleaching, large Stokes’ shift and high photochemical stability. The optical and spectroscopic features of nanoparticles make them very convincing alternatives to traditional fluorophores in a range of applications. Efficient surface capping agents make these nanocrystals bio-compatible. They can provide a novel platform on which many biomolecules such as DNA, RNA and proteins can be covalently linked. In the second phase of the present work, bio-compatible, fluorescent, manganese doped ZnS (ZnS:Mn) nanocrystals suitable for bioimaging applications have been developed and their cytocompatibility has been assessed. Functionalization of ZnS:Mn nanocrystals by safe materials results in considerable reduction of toxicity and allows conjugation with specific biomolecules. The highly fluorescent, bio-compatible and water- dispersible ZnS:Mn nanocrystals are found to be ideal fluorescent probes for biological labeling

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanophotonics can be regarded as a fusion of nanotechnology and photonics and it is an emerging field providing researchers opportunities in fundamental science and new technologies. In recent times many new methodsand techniques have been developed to prepare materials at nanoscale dimensions. Most of these materials exhibit unique and interesting optical properties and behavior. Many of these have been found to be very useful to develop new devices and systems such as tracers in biological systems, optical limiters, light emitters and energy harvesters. This thesis presents a summary of the work done by the author in the field by choosing a few semiconductor systems to prepare nanomaterials and nanocomposites. Results of the study of linear and nonlinear optical properties of materials thus synthesized are also presented in the various chapters of this thesis. CdS is the material chosen here and the methods and the studies of the detailed investigation are presented in this thesis related to the optical properties of CdS nanoparticles and its composites. Preparation and characterization methods and experimental techniques adopted for the investigations were illustrated in chapter 2 of this thesis. Chapter 3 discusses the preparation of CdS, TiO2 and Au nanoparticles. We observed that the fluorescence behaviour of the CdS nanoparticles, prepared by precipitation technique, depends on excitation wavelength. It was found that the peak emission wavelength can be shifted by as much as 147nm by varyingthe excitation wavelengths and the reason for this phenomenon is the selective excitation of the surface states in the nanoparticles. This provided certain amount of tunability for the emission which results from surface states.TiO2 nanoparticle colloids were prepared by hydrothermal method. The optical absorption study showed a blue shift of absorption edge, indicating quantum confinement effect. The large spectral range investigated allows observing simultaneously direct and indirect band gap optical recombination. The emission studies carried out show four peaks, which are found to be generated from excitonic as well as surface state transitions. It was found that the emission wavelengths of these colloidal nanoparticles and annealed nanoparticles showed two category of surface state emission in addition to the excitonic emission. Au nanoparticles prepared by Turkevich method showed nanoparticles of size below 5nm using plasmonic absorption calculation. It was also found that there was almost no variation in size as the concentration of precursor was changed from 0.2mM to 0.4mM.We have observed SHG from CdS nanostructured thin film prepared onglass substrate by chemical bath deposition technique. The results point out that studied sample has in-plane isotropy. The relative values of tensor components of the second-order susceptibility were determined to be 1, zzz 0.14, xxz and 0.07. zxx These values suggest that the nanocrystals are oriented along the normal direction. However, the origin of such orientation remains unknown at present. Thus CdS is a promising nonlinear optical material for photonic applications, particularly for integrated photonic devices. CdS Au nanocomposite particles were prepared by mixing CdS nanoparticles with Au colloidal nanoparticles. Optical absorption study of these nanoparticles in PVA solution suggests that absorption tail was red shifted compared to CdS nanoparticles. TEM and EDS analysis suggested that the amount of Au nanoparticles present on CdS nanoparticles is very small. Fluorescence emission is unaffected indicating the presence of low level of Au nanoparticles. CdS:Au PVA and CdS PVA nanocomposite films were fabricated and optically characterized. The results showed a red-shift for CdS:Au PVA film for absorption tail compared to CdS PVA film. Nonlinear optical analysis showed a huge nonlinear optical absorption for CdS:Au PVA nanocomposite and CdS:PVA films. Also an enhancement in nonlinear optical absorption is found for CdS:Au PVA thin film compared to the CdS PVA thin film. This enhancement is due to the combined effect of plasmonic as well as excitonic contribution at high input intensity. Samples of CdS doped with TiO2 were also prepared and the linear optical absorption spectra of these nanocompositeparticles clearly indicated the influence of TiO2 nanoparticles. TEM and EDS studies have confirmed the presence of TiO2 on CdS nanoparticles. Fluorescence studies showed that there is an increase in emission peak around 532nm for CdS nanoparticles. Nonlinear optical analysis of CdS:TiO2 PVA nanocomposite films indicated a large nonlinear optical absorption compared to that of CdS:PVA nanocomposite film. The values of nonlinear optical absorption suggests that these nanocomposite particles can be employed for optical limiting applications. CdSe-CdS and CdSe-ZnS core-shell QDs with varying shell size were characterized using UV–VIS spectroscopy. Optical absorption and TEM analysis of these QDs suggested a particle size around 5 nm. It is clearly shown that the surface coating influences the optical properties of QDs in terms of their size. Fluorescence studies reveal the presence of trap states in CdSe-CdS and CdSe- ZnS QDs. Trap states showed an increase as a shell for CdS is introduced and increasing the shell size of CdS beyond a certain value leads to a decrease in the trap state emission. There is no sizeable nonlinear optical absorption observed. In the case of CdSe- ZnS QDs, the trap state emission gets enhanced with the increase in ZnS shell thickness. The enhancement of emission from trap states transition due to the increase in thickness of ZnS shell gives a clear indication of distortion occurring in the spherical symmetry of CdSe quantum dots. Consequently the nonlinear optical absorption of CdSe-ZnS QDs gets increased and the optical limiting threshold is decreased as the shell thickness is increased in respect of CdSe QDs. In comparison with CdSe-CdS QDs, CdSe-ZnS QDs possess much better optical properties and thereby CdSe-ZnS is a strong candidate for nonlinear as well as linear optical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a 2.0 nm nanoparticle (low limit synthesized system) is compared to possible simplified models: passivated clusters, small (1.3 nm) nanoparticles and sets of plane surfaces. Our density functional theory results suggest that even when geometric aspects are properly described by the simplifications considered, electronic properties might be very different, especially when edge atoms are not properly taken into account in the nanoparticle`s modeling. In addition, we propose a protocol that might help future theoretical descriptions of nanoparticles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocrystalline SnO2 quantum dots were synthesized at room temperature by hydrolysis reaction of SnCl2. The addition of tetrabutyl ammonium hydroxide and the use of hydrothermal treatment enabled one to obtain tin dioxide colloidal suspensions with mean particle radii ranging from 1.5 to 4.3 nm. The photoluminescent properties of the suspensions were studied. The particle size distribution was estimated by transmission electron microscopy. Assuming that the maximum intensity photon energy of the photoluminescence spectra is related to the band gap energy of the system, the size dependence of the band gap energies of the quantum-confined SnO2 particles was studied. This dependence was observed to agree very well with the weak confinement regime predicted by the effective mass model. This might be an indication that photoluminescence occurs as a result of a free exciton decay process. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work describes the synthesis of highly conducting antimony-doped tin oxide (ATO) nanocrystals prepared via a nonaqueous sol–gel route in the size range of 4–6 nm and provides insights into its electrical properties. The antimony composition was varied from 1 to 18 mol% and the lowest resistivity (4.0 × 10−4Ω·cm) was observed at room temperature in the SnO2:8.8 mol% Sb composition. The samples were evaluated by X-ray diffraction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscope, and resistivity measurements were taken in the four-probe mode in the temperature range of 13–300 K. The results show highly crystalline nanoparticles in a monodisperse colloidal system, dependence on the shape of ATO nanoparticles as a function of Sb distribution, low resistivity, and semiconductor–metal transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports evidence of the induced migration of Mn2+ ions in Cd(1-x)MnxS nanocrystals (NCs) by selecting a specific thermal treatment for each sample. The growth and characterization of these magnetic dots were investigated by atomic force microscopy (AFM), optical absorption (OA), and electronic paramagnetic resonance (EPR) techniques. The comparison of experimental and simulated EPR spectra confirms the incorporation of Mn2+ ions both in the core and at the dot surface regions. The thermal treatment of a magnetic sample, via selected annealing temperature and/or time, affects the fine and hyperfine interaction constants which modify the shape and the intensity of the EPR transition spectrum. The identification of these changes has allowed tracing the magnetic ion migration from core to surface regions of a dot as well as inferring the local density of the magnetic impurity ions. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis is focused on the development of a method for the synthesis of silicon nanocrystals with different sizes, narrow size distribution, good optical properties and stability in air. The resulting silicon nanocrystals have been covalently functionalized with different chromophores with the aim to exploit the new electronic and chemical properties that emerge from the interaction between silicon nanocrystal surface and ligands. The purpose is to use these chromophores as light harvesting antennae, increasing the optical absorption of silicon nanocrystals. Functionalized silicon nanocrystals have been characterized with different analytical techniques leading to a good knowledge of optical properties of semiconductor quantum dots.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report that high quality PbS nanocrystals, synthesized in the strong quantum confinement regime, have quantum yields as high as 70% at room temperature. We use a combination of modelling and photoluminescence up-conversion to show that we obtain a nearly monodisperse size distribution. Nevertheless, the emission displays a large nonresonant Stokes shift. The magnitude of the Stokes shift is found to be directly proportional to the degree of quantum confinement, from which we establish that the emission results from the recombination of one quantum confined charge carrier with one localized or surface-trapped charge carrier. Furthermore, the surface state energy is found to lie outside the bulk bandgap so that surface-related emission only commences for strongly quantum confined nanocrystals, thus highlighting a regime where improved surface passivation becomes necessary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report that the internal quantum efficiency for hydrogen generation in spherical, Pt-decorated CdS nanocrystals can be tuned by quantum confinement, resulting in higher efficiencies for smaller than for larger nanocrystals (17.3% for 2.8 nm and 11.4% for 4.6 nm diameter nanocrystals). We attribute this to a larger driving force for electron and hole transfer in the smaller nanocrystals. The larger internal quantum efficiency in smaller nanocrystals enables a novel colloidal dual-band gap cell utilising differently sized nanocrystals and showing larger external quantum efficiencies than cells with only one size of nanocrystals (9.4% for 2.8 nm particles only and 14.7% for 2.8 nm and 4.6 nm nanocrystals). This represents a proof-of-principle for future colloidal tandem cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymeric nanoparticles have been developed for several applications, among them as carrier system of pesticides. However, few studies have investigated the fate of these materials in the environment in relation to colloidal stability and toxicity. In nature, humic substances are the main agents responsible for complexation with metals and organic compounds, as well as responsible for the dynamics of these nanoparticles in aquatic and terrestrial environments. In this context, the evaluation of the influence of aquatic humic substances (AHS) on the colloidal stability and toxicity of polymeric nanoparticles of chitosan/tripolyphosphate with or without paraquat was performed. In this study, the nanoparticles were prepared by the ionic gelation method and characterized by size distribution measurements (DLS and NTA), zeta potential, infrared and fluorescence spectroscopy. Allium cepa genotoxicity studies and ecotoxicity assays with the alga Pseudokirchneriella subcapitata were used to investigate the effect of aquatic humic substances (AHS) on the toxicity of this delivery system. No changes were observed in the physical-chemical stability of the nanoparticles due to the presence of AHS using DLS and NTA techniques. However some evidence of interaction between the nanoparticles and AHS was observed by infrared and fluorescence spectroscopies. The ecotoxicity and genotoxicity assays showed that humic substances can decrease the toxic effects of nanoparticles containing paraquat. These results are interesting because they are important for understanding the interaction of these nanostructured carrier systems with species present in aquatic ecosystems such as humic substances, and in this way, opening new perspectives for studies on the dynamics of these carrier systems in the ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colloidal particles have been used to template the electrosynthesis of several materials, such as semiconductors, metals and alloys. The method allows good control over the thickness of the resulting material by choosing the appropriate charge applied to the system, and it is able to produce high density deposited materials without shrinkage. These materials are a true model of the template structure and, due to the high surface areas obtained, are very promising for use in electrochemical applications. In the present work, the assembly of monodisperse polystyrene templates was conduced over gold, platinum and glassy carbon substrates in order to show the electrodeposition of an oxide, a conducting polymer and a hybrid inorganic-organic material with applications in the supercapacitor and sensor fields. The performances of the resulting nanostructured films have been compared with the analogue bulk material and the results achieved are depicted in this paper.