980 resultados para COATED CARBIDE TOOLS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been a great interest for improving the machining of cast iron materials in the automotive and other industries. Comparative studies for tool used to machine grey cast iron (CI) and compacted graphite iron (CGI) on dry machining were also performed in order to find out why in this case the tool lifetime is not significantly higher. However the machining these materials while considering turning with the traditional high-speed steel and carbide cutting tools present any disadvantages. One of these disadvantages is that all the traditional machining processes involve the cooling fluid to remove the heat generated on workpiece due to friction during cutting. This paper present a new generation of ceramic cutting tool exhibiting improved properties and important advances in machining CI and CGI. The tool performance was analyzed in function of flank wear, temperature and roughness, while can be observed that main effects were found for tool wear, were abrasion to CI and inter-diffusion of constituting elements between tool and CGI, causing crater. However the difference in tool lifetime can be explained by the formation of a MnS layer on the tool surface in the case of grey CI. This layer is missing in the case of CGI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to their high hardness and wear resistance Si3N4 based ceramics are one of the most suitable cutting tool materials for machining hardened materials. Therefore, their high degree of brittleness usually leads to inconsistent results and sudden catastrophic failures. Improvement of the functional properties these tools and reduction of the ecological threats may be accomplished by employing the technology of putting down hard coatings on tools in the state-of-the-art PVD processes, mostly by improvement of the tribological contact conditions in the cutting zone and by eliminating the cutting fluids. However in this paper was used a Si3N4 based cutting tool commercial with a layer TiN coating. In this investigation, the performance of TiN coating was assessed on turning used to machine an automotive grade compacted graphite iron. As part of the study were used to characterise the performance of cutting tool, flank wear, temperature and roughness. The results showed that the layer TiN coating failed to dry compacted graphite iron under aggressive machining conditions. However, using the measurement of flank wear technique, the average tool life of was increased by VC=160 m/min.The latter was also observed using a toolmakers microscope and scanning electron microscopy (SEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silicon nitride cutting tools have been used successfully for machining hard materials, like: cast irons, nickel based alloys, etc. However these cutting tools with diamond coating present little information on dry turning operations of gray cast iron. In the present work, Si3N4 square inserts was developed, characterized and subsequently coated with diamond for dry machining operations on gray cast iron. All experiments were conducted with replica. It was used a 1500, 3000, 4500 m cutting length, feed rate of 0.33 mm/rev and keeping the depth of cut constant and equal to 1 mm. The results show that wear in the tool tips of the Si3N4 inserts, in all cutting conditions, was caused by both mechanical and chemical processes. To understand the tool wear mechanisms, a morphological analysis of the inserts, after experiments, has been performed by SEM and optical microscopy. Diamond coated PVD inserts showed to be capable to reach large cutting lengths when machining gray cast iron. © (2010) Trans Tech Publications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PREPARATION OF COATED MICROTOOLS FOR ELECTROCHEMICAL MACHINING APPLICATIONS Ajaya K. Swain, M.S. University of Nebraska, 2010 Advisor: K.P. Rajurkar Coated tools have improved the performance of both traditional and nontraditional machining processes and have resulted in higher material removal, better surface finish, and increased wear resistance. However, a study on the performance of coated tools in micromachining has not yet been adequately conducted. One possible reason is the difficulties associated with the preparation of coated microtools. Besides the technical requirement, economic and environmental aspects of the material and the coating technique used also play a significant role in coating microtools. This, in fact, restricts the range of coating materials and the type of coating process. Handling is another major issue in case of microtools purely because of their miniature size. This research focuses on the preparation of coated microtools for pulse electrochemical machining by electrodeposition. The motivation of this research is derived from the fact that although there were reports of improved machining by using insulating coatings on ECM tools, particularly in ECM drilling operations, not much literature was found relating to use of metallic coating materials in other ECM process types. An ideal ECM tool should be good thermal and electrical conductor, corrosion resistant, electrochemically stable, and stiff enough to withstand electrolyte pressure. Tungsten has almost all the properties desired in an ECM tool material except being electrochemically unstable. Tungsten can be oxidized during machining resulting in poor machining quality. Electrochemical stability of a tungsten ECM tool can be improved by electroplating it with nickel which has superior electrochemical resistance. Moreover, a tungsten tool can be coated in situ reducing the tool handling and breakage frequency. The tungsten microtool was electroplated with nickel with direct and pulse current. The effect of the various input parameters on the coating characteristics was studied and performance of the coated microtool was evaluated in pulse ECM. The coated tool removed more material (about 28%) than the uncoated tool under similar conditions and was more electrochemical stable. It was concluded that nickel coated tungsten microtool can improve the pulse ECM performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

von Willebrand factor/ristocetin (vWF/R) induces GPIb-dependent platelet agglutination and activation of αIIbβ3 integrin, which also binds vWF. These conditions make it difficult to investigate GPIb-specific signaling pathways in washed platelets. Here, we investigated the specific mechanisms of GPIb signaling using echicetin-coated polystyrene beads, which specifically activate GPIb. We compared platelet activation induced by echicetin beads to vWF/R. Human platelets were stimulated with polystyrene beads coated with increasing amounts of echicetin and platelet activation by echicetin beads was then investigated to reveal GPIb specific signaling. Echicetin beads induced αIIbβ3-dependent aggregation of washed platelets, while under the same conditions vWF/R treatment led only to αIIbβ3-independent platelet agglutination. The average distance between the echicetin molecules on the polystyrene beads must be less than 7 nm for full platelet activation, while the total amount of echicetin used for activation is not critical. Echicetin beads induced strong phosphorylation of several proteins including p38, ERK and PKB. Synergistic signaling via P2Y12 and thromboxane receptor through secreted ADP and TxA2, respectively, were important for echicetin bead triggered platelet activation. Activation of PKG by the NO/sGC/cGMP pathway inhibited echicetin bead-induced platelet aggregation. Echicetin-coated beads are powerful and reliable tools to study signaling in human platelets activated solely via GPIb and GPIb-triggered pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deposition efficiencies of a number of electroless nickel and cobalt plating solutions were studied and in the case of nickel compared with a commercial plating solution Nifoss 80. At the optimum plating conditions (92ºC and pH 4.5) Nifoss 80 produced nickel layers most efficiently, the alkaline cobalt solution operated most efficiently at 90ºC and pH 9. The methods of producing compostte layers containing 2-3 µm carbide particles and chromium powder is described. Nickel and cobalt layers containing approximately 27% carbide particles, or 40% (Ni) and 30% (Co) chromium particles by volume were obtained. This value is independent of the particle concentration in the plating solution within the range (20~200 g/l). Hardness of the nickel. as deposited was 515 Hv, this was increased to a maximum of 1155 Hv by heat treatment at 200ºC for 5 hours in vacuum. Incorporation. of .chromium carbide particles resulted in a maximum hardness of 1225 Hv after heating at 500ºC for 5 hours in vacuum and chromium particles resulted in a maximum hardness of 16S0 Hv after heat treatment at 400ºC for 2 hours in vacuum. Similarly the hardness of cobalt as deposited was 600 Hv, this was increased to a maximum of 1300 Hv after heat treatment at 400ºC for 1 hour. Incorporation of chromium carbide particles resulted jn a maximum hardness of 1405 Hv after heating at 400ºC for 5 hours in vacuum and chromium particles resulted in a maximum hardness of 1440 Hv after. heat treating for 2 hours at 400ºC in vacuum. The structure of the deposits was studied by optical and scanning electron microscopy. The wear rate and coefficient of friction was determined by a pin and disc method. Wear rate and coefficient of friction decreased with increase in hardness. The wear resistance of the materials was also determined using a simulated forging test. Dies made of standard die steel were coated and the wear rates of the layers as deposited and after heat treatment were compared with those of uncoated tools. The wear resistance generally increased with hardness, it was 50-75% more than the uncoated die steel. Acetic acid salt spray test and outdoor exposure for six months was used to study the corrosion behaviour of the deposits and potentiodynamic curves plotted to find their corrosion potential. Nickel deposit exhibited less staining than carbide composite deposits and nickel-chromium deposits had the most noble corrosion potential.