992 resultados para CARBON FLUX


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic carbon fluxes through the sediment/water interface in the high-latitude North Atlantic were calculated from oxygen microprofiles. A wire-operated in situ oxygen bottom profiler was deployed, and oxygen profiles were also measured onboard (ex situ). Diffusive oxygen fluxes, obtained by fitting exponential functions to the oxygen profiles, were translated into organic carbon fluxes and organic carbon degradation rates. The mean Corg input to the abyssal plain sediments of the Norwegian and Greenland Seas was found to be 1.9 mg C/m**2/d. Typical values at the seasonally ice-covered East Greenland continental margin are between 1.3 and 10.9 mg C/m**2/d (mean 3.7 mg C/m**2/d), whereas fluxes on the East Greenland shelf are considerably higher, 9.1-22.5 mg C/m**2/d. On the Norwegian continental slope Corg fluxes of 3.3-13.9 mg C/m**2/d (mean 6.5 mg C/m**2/d) were found. Fluxes are considerably higher here compared to stations on the East Greenland slope at similar water depths. By repeated occupation of three sites off southern Norway in 1997 the temporal variability of diffusive O2 fluxes was found to be quite low. The seasonal signal of primary and export production from the upper water column appears to be strongly damped at the seafloor. Degradation rates of 0.004-1.1 mg C/cm**3/a at the sediment surface were calculated from the oxygen profiles. First-order degradation constants, obtained from Corg degradation rates and sediment organic carbon content, are in the range 0.03-0.6/a. Thus, the corresponding mean lifetime of organic carbon lies between 1.7 and 33.2 years, which also suggests that seasonal variations in Corg flux are small. The data presented here characterize the Norwegian and Greenland Seas as oligotrophic and relatively low organic carbon deep-sea environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of mesoscale eddies that develop suboxic environments at shallow depth (about 40-100 m) has recently been reported for the eastern tropical North Atlantic (ETNA). Their hydrographic structure suggests that the water mass inside the eddy is well isolated from ambient waters supporting the development of severe near-surface oxygen deficits. So far, hydrographic and biogeochemical characterization of these eddies was limited to a few autonomous surveys, with the use of moorings, under water gliders and profiling floats. In this study we present results from the first dedicated biogeochemical survey of one of these eddies conducted in March 2014 near the Cape Verde Ocean Observatory (CVOO). During the survey the eddy core showed oxygen concentrations as low as 5 µmol kg-1 with a pH of around 7.6 at approximately 100 m depth. Correspondingly, the aragonite saturation level dropped to 1 at the same depth, thereby creating unfavorable conditions for calcifying organisms. To our knowledge, such enhanced acidity within near-surface waters has never been reported before for the open Atlantic Ocean. Vertical distributions of particulate organic matter and dissolved organic matter (POM and DOM), generally showed elevated concentrations in the surface mixed layer (0-70 m), with DOM also accumulating beneath the oxygen minimum. With the use of reference data from the upwelling region where these eddies are formed, the oxygen utilization rate was calculated by determining oxygen consumption through the remineralization of organic matter. Inside the core, we found these rates were almost 1 order of magnitude higher (apparent oxygen utilization rate (aOUR); 0.26 µmol kg-1 day-1) than typical values for the open North Atlantic. Computed downward fluxes for particulate organic carbon (POC), were around 0.19 to 0.23 g C m-2 day-1 at 100 m depth, clearly exceeding fluxes typical for an oligotrophic open-ocean setting. The observations support the view that the oxygen-depleted eddies can be viewed as isolated, westwards propagating upwelling systems of their own, thereby represent re-occurring alien biogeochemical environments in the ETNA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arc discharge ablation with a catalyst-filled carbon anode in a helium background was used for the synthesis of graphene and carbon nanotubes. In this paper, we present the results of the numerical simulation of the distribution of various plasma parameters in discharge, as well as the distribution of carbon flux on the nanotube surface, for the typical discharge with an arc current of 60 A and a background gas pressure of 68 kPa.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A numerical growth model is used to describe the catalyzed growth of carbon nanofibers in the sheath of a low-temperature plasma. Using the model, the effects of variation in the plasma sheath parameters and substrate potential on the carbon nanofiber growth characteristics, such as the growth rate, the effective carbon flux to the catalyst surface, and surface coverages, have been investigated. It is shown that variations in the parameters, which change the sheath width, mainly affect the growth parameters at the low catalyst temperatures, whereas the other parameters such as the gas pressure, ion temperature, and percentages of the hydrocarbon and etching gases, strongly affect the carbon nanofiber growth at higher temperatures. The conditions under which the carbon nanofiber growth can still proceed under low nanodevice-friendly process temperatures have been formulated and summarized. These results are consistent with the available experimental results and can also be used for catalyzed growth of other high-aspect-ratio nanostructures in low-temperature plasmas.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A theoretical model to describe the plasma-assisted growth of carbon nanofibers (CNFs) is proposed. Using the model, the plasma-related effects on the nanofiber growth parameters, such as the growth rate due to surface and bulk diffusion, the effective carbon flux to the catalyst surface, the characteristic residence time and diffusion length of carbon atoms on the catalyst surface, and the surface coverages, have been studied. The dependence of these parameters on the catalyst surface temperature and ion and etching gas fluxes to the catalyst surface is quantified. The optimum conditions under which a low-temperature plasma environment can benefit the CNF growth are formulated. These results are in good agreement with the available experimental data on CNF growth and can be used for optimizing synthesis of related nanoassemblies in low-temperature plasma-assisted nanofabrication. © 2008 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The kinetics of the nucleation and growth of carbon nanotube and nanocone arrays on Ni catalyst nanoparticles on a silicon surface exposed to a low-temperature plasma are investigated numerically, using a complex model that includes surface diffusion and ion motion equations. It is found that the degree of ionization of the carbon flux strongly affects the kinetics of nanotube and nanocone nucleation on partially saturated catalyst patterns. The use of highly ionized carbon flux allows formation of a nanotube array with a very narrow height distribution of half-width 7 nm. Similar results are obtained for carbon nanocone arrays, with an even narrower height distribution, using a highly ionized carbon flux. As the deposition time increases, nanostructure arrays develop without widening the height distribution when the flux ionization degree is high, in contrast to the fairly broad nanostructure height distributions obtained when the degree of ionization is low.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study combines field and satellite observations to investigate how hydrographical transformations influence phytoplankton size structure in the southern Bay of Bengal during the peak Southwest Monsoon/Summer Monsoon (July-August). The intrusion of the Summer Monsoon Current (SMC) into the Bay of Bengal and associated changes in sea surface chemistry, traceable eastward up to 90 degrees E along 8 degrees N, seems to influence biology of the region significantly. Both in situ and satellite (MODIS) data revealed low surface chlorophyll except in the area influenced by the SMC During the study period, two well-developed cydonic eddies (north) and an anti-cyclonic eddy (south), closely linked to the main eastward flow of the SMC, were sampled. Considering the capping effect of the low-saline surface water that is characteristic of the Bay of Bengal, the impact of the cyclonic eddy, estimated in terms of enhanced nutrients and chlorophyll, was mostly restricted to the subsurface waters (below 20 m depth). Conversely, the anti-cyclonic eddy aided by the SMC was characterized by considerably higher nutrient concentration and chlorophyll in the upper water column (upper 60 m), which was contrary to the general characteristic of such eddies. Albeit smaller phytoplankton predominated the southern Bay of Bengal (60-95% of the total chlorophyll), the contribution of large phytoplankton was double in the regions influenced by the SMC and associated eddies. Multivariate analysis revealed the extent to which SMC-associated eddies spatially influence phytoplankton community structure. The study presents the first direct quantification of the size structure of phytoplankton from the southern Bay of Bengal and demonstrates that the SMC-associated hydrographical ramifications significantly increase the phytoplankton biomass contributed by larger phytoplankton and thereby influence the vertical opal and organic carbon flux in the region. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Research related to carbon geochemistry and biogeochemistry in the East China Sea is reviewed in this paper. The East China Sea is an annual net sink for atmospheric CO, and a large net source of dissolved inorganic carbon to the ocean. The sea absorbs CO, from the atmosphere in spring and summer and releases it in autumn and winter. The East China Sea is a CO, sink in summer because Changjiang River freshwater flows into it. The net average sea-air interface carbon flux of the East China Sea is estimated to be about 4.3 X 10(6) t/y. Vertical carbon transport is mainly in the form of particulate organic carbon in spring; more than 98% of total carbon is transported in this form in surface water, and the number exceeds 68% in water near the bottom. In the southern East China Sea, the average particulate organic carbon inventory was about one-tenth that of the dissolved organic carbon. Research indicates that the southern Okinawa Trough is an important site for particulate organic carbon export from the shelf. The annual cross-shelf exports are estimated to be 414 and 106 Gmol/y for dissolved organic carbon and particulate organic carbon, respectively. Near-bottom transport could be the key process for shelf-to-deep sea export of biogenic and lithogenic particles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

*Hydraulic redistribution (HR) of water via roots from moist to drier portions of the soil occurs in many ecosystems, potentially influencing both water use and carbon assimilation. *By measuring soil water content, sap flow and eddy covariance, we investigated the temporal variability of HR in a loblolly pine (Pinus taeda) plantation during months of normal and below-normal precipitation, and examined its effects on tree transpiration, ecosystem water use and carbon exchange. *The occurrence of HR was explained by courses of reverse flow through roots. As the drought progressed, HR maintained soil moisture above 0.15 cm(3) cm(-3) and increased transpiration by 30-50%. HR accounted for 15-25% of measured total site water depletion seasonally, peaking at 1.05 mm d(-1). The understory species depended on water redistributed by the deep-rooted overstory pine trees for their early summer water supply. Modeling carbon flux showed that in the absence of HR, gross ecosystem productivity and net ecosystem exchange could be reduced by 750 and 400 g C m(-2) yr(-1), respectively. *Hydraulic redistribution mitigated the effects of soil drying on understory and stand evapotranspiration and had important implications for net primary productivity by maintaining this whole ecosystem as a carbon sink.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Very large pulses of particulate organic matter intermittently sink to the deep waters of the open ocean in the Northeast Atlantic. These pulses, measured by moored sediment traps since 1989, can contribute up to 60% of the organic flux to 3000 m in a particular year and are thus a major cause of the variability in carbon sequestration from the atmosphere in the region. Pulses occur in the late summer and are characterized by material that is very rich in organic carbon but with low concentrations of the biominerals opal and calcite. A number of independent lines of evidence have been examined to determine the causes of these pulses: (1) Data from the Continuous Plankton Recorder (CPR) survey show that in this region, radiolarian protozoans intermittently reach high abundances in the late summer just preceding organic pulses to depth. (2) CPR data also show that the interannual variability in radiolarian abundance since 1997 mirrors very closely the variability of deep ocean organic deposition. (3) The settling material collected in the traps displays a strong correlation between fecal pellets produced by radiolaria and the measured organic carbon flux. These all suggest that the pulses are mediated by radiolarians, a group of protozoans found throughout the world’s oceans and which are widely used by paleontologists to determine past climate conditions. Changes in the upper ocean community structure (between years and on longer timescales) may have profound effects on the ability of the oceans to sequester carbon dioxide from the atmosphere.