854 resultados para Building Energy Use


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building insulation is often used to reduce the conduction heat transfer through building envelope. With a higher level of insulation (or a greater R-value), the less the conduction heat would transfer through building envelope. In this paper, using building computer simulation techniques, the effects of building insulation levels on the thermal and energy performance of a sample air-conditioned office building in Australia are studied. It is found that depending on the types of buildings and the climates of buildings located, increasing the level of building insulation will not always bring benefits in energy saving and thermal comfort, particularly for internal-load dominated office buildings located in temperate/tropical climates. The possible implication of building insulation in face of global warming has also been examined. Compared with the influence of insulation on building thermal performance, the influence on building energy use is relatively small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global warming is entailing new climatic conditions for the built environment. Such a warming climate will affect both the performance of existing building stock and the design of new buildings. In this article, the knowledge of global warming and climate change is first introduced. The cycling interaction between global warming and buildings is then presented. The impact of global warming on building energy use and thermal performance is also assessed. Finally, the potential mitigation and adaptation strategies to the global warming are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global warming can have a significant impact on building energy performance and indoor thermal environment, as well as the health and productivity of people living and working inside them. Through the building simulation technique, this paper investigates the adaptation potential of different selections of building physical properties to increased outdoor temperature in Australia. It is found that overall, an office building with lower insulation level, smaller window to wall ratio and/or a glass type with lower shading coefficient, and lower internal load density will have the effect of lowering building cooling load and total energy use, and therefore have a better potential to adapt to the warming external climate. Compared with clear glass, it is shown that the use of reflective glass for the sample building with WWR being 0.5 reduces the building cooling load by more than 12%. A lower internal load can also have a significant impact on the reduction of building cooling load, as well as the building energy use. Through the comparison of results between current and future weather scenarios, it is found that the patterns found in the current weather scenario also exist in the future weather scenarios, but to a smaller extent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses findings made during a study of energy use feedback in the home (eco-feedback), well after the novelty has worn off. Contributing towards four important knowledge gaps in the research, we explore eco-feedback over longer time scales, focusing on instances where the feedback was not of lasting benefit to users rather than when it was. Drawing from 23 semi-structured interviews with Australian householders, we found that an initially high level of engagement gave way over time to disinterest, neglect and in certain cases, technical malfunction. Additionally, preconceptions concerned with the “purpose” of the feedback were found to affect use. We propose expanding the scope of enquiry for eco-feedback in several ways, and describe how eco-feedback that better supports decision-making in the “maintenance phase”, i.e. once the initial novelty has worn off, may be key to longer term engagement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mining industry faces concurrent pressures of reducing water use, energy consumption and greenhouse gas (GHG) emissions in coming years. However, the interactions between water and energy use, as well as GHG e missions have largely been neglected in modelling studies to date. In addition, investigations tend to focus on the unit operation scale, with little consideration of whole-of-site or regional scale effects. This paper presents an application of a hierarchical systems model (HSM) developed to represent water, energy and GHG emissions fluxes at scales ranging from the unit operation, to the site level, to the regional level. The model allows for the linkages between water use, energy use and GHG emissions to be examined in a fl exible and intuitive way, so that mine sites can predict energy and emissions impacts of water use reduction schemes and vice versa. This paper examines whether this approach can also be applied to the regional scale with multiple mine sites. The model is used to conduct a case study of several coal mines in the Bowen Basin, Australia, to compare the utility of centralised and decentralised mine water treatment schemes. The case study takes into account geographical factors (such as water pumping distances and elevations), economic factors (such as capital and operating cost curves for desalination treatment plants) and regional factors (such as regionally varying climates and associated variance in mine water volumes and quality). The case study results indicate that treatment of saline mine water incurs a trade-off between water and energy use in all cases. However, significant cost differences between centralised and decentralised schemes can be observed in a simple economic analysis. Further research will examine the possibility for deriving model up-scaling algorithms to reduce computational requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new era of visible and sharable electricity information is emerging. Where eco-feedback is installed, households can now visualise many aspects of their energy consumption and share this information with others through Internet platforms such as social media. Despite providing users with many affordances, eco-feedback information can make public previously private actions from within the intimate setting of the family home. This paper represents a study focussing specifically on the privacy aspects of nascent ways for viewing and sharing this new stream of personal information. It explores the nuances of privacy related to eco-feedback both within and beyond the family home. While electricity consumption information may not be considered private itself, the household practices which eco-feedback systems makes visible may be private. We show that breaches of privacy can occur in unexpected ways and have the potential to cause distress. The paper concludes with some suggestions for how to realise the benefits of sharing energy consumption information whist effectively maintaining individuals’ conceptions of adequate privacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased focus on energy cost savings and carbon footprint reduction efforts improved the visibility of building energy simulation, which became a mandatory requirement of several building rating systems. Despite developments in building energy simulation algorithms and user interfaces, there are some major challenges associated with building energy simulation; an important one is the computational demands and processing time. In this paper, we analyze the opportunities and challenges associated with this topic while executing a set of 275 parametric energy models simultaneously in EnergyPlus using a High Performance Computing (HPC) cluster. Successful parallel computing implementation of building energy simulations will not only improve the time necessary to get the results and enable scenario development for different design considerations, but also might enable Dynamic-Building Information Modeling (BIM) integration and near real-time decision-making. This paper concludes with the discussions on future directions and opportunities associated with building energy modeling simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the years, significant changes have taken place with regard to the type as well the quantity of energy used in Indian households. Many factors have contributed in bringing these changes. These include availability of energy, security of supplies, efficiency of use, cost of device, price of energy carriers, ease of use, and external factors like technological development, introduction of subsidies, and environmental considerations. The present paper presents the pattern of energy consumption in the household sector and analyses the causalities underlying the present usage patterns. It identifies specific (groups of) actors, study their specific situations, analyse the constraints and discusses opportunities for improvement. This can be referred to ``actor-oriented'' analysis in which we understand how various actors of the energy system are making the system work, and what incentives and constraints each of these actors is experiencing. It analyses actor linkages and their impact on the fuel choice mechanism. The study shows that the role of actors in household fuel choice is significant and depends on the level of factors - micro, meso and macro. It is recommended that the development interventions should include actor-oriented tools in energy planning, implementation, monitoring and evaluation. The analysis is based on the data from the national sample survey (NSS), India. This approach provides a spatial viewpoint which permits a clear assessment of the energy carrier choice by the households and the influence of various actors. The scope of the paper is motivated and limited by suggesting and formulating a powerful analytical technique to analyse the problem involving the role of actors in the Indian household sector.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy use in developing countries is heterogeneous across households. Present day global energy models are mostly too aggregate to account for this heterogeneity. Here, a bottom-up model for residential energy use that starts from key dynamic concepts on energy use in developing countries is presented and applied to India. Energy use and fuel choice is determined for five end-use functions (cooking, water heating, space heating, lighting and appliances) and for five different income quintiles in rural and urban areas. The paper specifically explores the consequences of different assumptions for income distribution and rural electrification on residential sector energy use and CO(2) emissions, finding that results are clearly sensitive to variations in these parameters. As a result of population and economic growth, total Indian residential energy use is expected to increase by around 65-75% in 2050 compared to 2005, but residential carbon emissions may increase by up to 9-10 times the 2005 level. While a more equal income distribution and rural electrification enhance the transition to commercial fuels and reduce poverty, there is a trade-off in terms of higher CO(2) emissions via increased electricity use. (C) 2011 Elsevier Ltd. All rights reserved.