991 resultados para Box-Jenkins method
Resumo:
Resumo não disponível.
Resumo:
Este trabalho compara procedimentos de previsão de preços de commodities, utilizados de maneira impírica pelos analistas de mercado, com os procedimentos fornecidos pela Análise de Séries Temporais. Aplicamos os métodos de previsão utilizando as Médias Móveis, os métodos baseados em Alisamentos exponenciais e principalmente os modelos ARIMA de Box-Jenkins. Estes últimos são, em geral, generalizações dos primeiros, com a vantagem de utilizar os instrumentos estatísticos de medidas das incertezas, como o desvio-padrão e os intervalos de confiança para as previsões
Resumo:
Este estudo teve como objetivo analisar a dinâmica da intervenção do Estado na economia através das experiências, em dois séculos de história, das economias capitalistas desenvolvidas do Reino Unido e da França. Sua elaboração foi fundamentada nas visões institucionalistas sobre a relação Estado-economiasociedade, e como método analítico foi empregado o modelo de análise de intervenção - caso especial dos modelos de transferência de BOX & JENKINS (1976). Os resultados decorrentes da aplicação do modelo, assim como, dos principais eventos históricos de cunhos econômico, político e social permitiram concluir que a intervenção do Estado surge como resposta ao princípio catalisador presente no seio dessa instituição, isto é, à transferência dos problemas e divergências (conflitos entre princípios reguladores da ordem social, entre capitais, entre atores sociais, entre países, etc.) de uma dada sociedade para um poder comum reconhecido e legalmente constituído, o Estado. Nesse sentido, por ser uma instituição criada por essa mesma sociedade age de acordo com o grande paradigma organizacional que a orienta, no caso o capitalismo. Destaque-se ainda a negação do pressuposto, presente em algumas teorias sobre o Estado, da autonomia relativa dos administradores do Estado (governo, homens públicos) no processo de tomada de decisão dos mecanismos de intervenção e de regulação adotados.
Resumo:
A identificação antecipada do comportamento da demanda de veículos novos na extremidade da rede de distribuição é imprescindível para implementação de um sistema de produção puxada pela demanda. Previsões confiáveis, obtidas nas concessionárias, conferem aos fabricantes maior sensibilidade diante das peculariedades locais da demanda e reduzem as incertezas da produção em larga escala. A obtenção de previsões consistentes requer, porém, o emprego de métodos formais. Os profissionais responsáveis pela elaboração de previsões nas concessionárias desconhecem, em grande parte, os métodos de forecasting abordados na literatura. Essa dissertação visa o desenvolvimento de um sistema formal para elaboração de previsões de demanda de veículos novos em concessionárias. Em estudo de caso, conduzido em uma concessionária da marca Volkswagen, modelos estatísticos de Box-Jenkins e de suavização exponencial são aplicados para gerar previsões quantitativas das vendas de veículos novos. Previsões qualitativas, correspondentes ao julgamento de especialistas no segmento, são formalizadas através do método Delphi. Finalmente, as previsões quantitativas e qualitativas são combinadas matematicamente e comparadas. Tal comparação demonstra que as vantagens inerentes a cada método podem ser absorvidas para proporcionar previsões mais acuradas.
Resumo:
A maioria dos métodos de síntese e sintonia de controladores, bem como métodos de otimização e análise de processos necessitam de um modelo do processo em estudo. A identificação de processos é portanto uma área de grande importância para a engenharia em geral pois permite a obtenção de modelos empíricos dos processos com que nos deparamos de uma forma simples e rápida. Mesmo não utilizando leis da natureza, os modelos empíricos são úteis pois descrevem o comportamento específico de determinado processo. Com o rápido desenvolvimento dos computadores digitais e sua larga aplicação nos sistemas de controle em geral, a identificação de modelos discretos foi amplamente desenvolvida e empregada, entretanto, modelos discretos não são de fácil interpretação como os modelos contínuos pois a maioria dos sistema com que lidamos são de representação contínua. A identificação de modelos contínuos é portanto útil na medida que gera modelos de compreensão mais simples. A presente dissertação estuda a identificação de modelos lineares contínuos a partir de dados amostrados discretamente. O método estudado é o chamado método dos momentos de Poisson. Este método se baseia em uma transformação linear que quando aplicada a uma equação diferencial ordinária linear a transforma em uma equação algébrica evitando com isso a necessidade do cálculo das derivadas do sinais de entrada e saída Além da análise detalhada desse método, onde demonstramos o efeito de cada parâmetro do método de Poisson sobre o desempenho desse, foi realizado também um estudo dos problemas decorrentes da discretização de sinais contínuos, como por exemplo o efeito aliasing decorrente da utilização de tempos de amostragem muito grandes e de problemas numéricos da identificação de modelos discretos utilizando dados com tempos de amostragem muito pequenos de forma a destacar as vantagens da identificação contínua sobre a identificação discreta Também foi estudado um método para compensar a presença de offsets nos sinais de entrada e saída, método esse inédito quando se trata do método dos momentos de Poisson. Esse trabalho também comprova a equivalência entre o método dos momentos de Poisson e uma metodologia apresentada por Rolf Johansson em um artigo de 1994. Na parte final desse trabalho são apresentados métodos para a compensação de erros de modelagem devido à presença de ruído e distúrbios não medidos nos dados utilizados na identificação. Esses métodos permitem que o método dos momentos de Poisson concorra com os métodos de identificação discretos normalmente empregados como por exemplo ARMAX e Box-Jenkins.
Resumo:
A previsão de demanda é uma atividade relevante pois influencia na tomada de decisão das organizações públicas e privadas. Este trabalho procura identificar modelos econométricos que apresentem bom poder preditivo para a demanda automotiva brasileira num horizonte de longo prazo, cinco anos, através do uso das séries de vendas mensais de automóveis, veículos comerciais leves e total, o período amostral é de 1970 a 2010. Foram estimados e avaliados os seguintes modelos: Auto-regressivo (Box-Jenkins, 1976), Estrutural (Harvey, 1989) e Mudança de Regime (Hamilton, 1994), incluindo efeitos calendário e dummies além dos testes de raízes unitárias sazonais e não-sazonais para as séries. A definição da acurácia dos modelos baseou-se no Erro Quadrático Médio (EQM) dos resultados apresentados na simulação da previsão de demanda dos últimos quinze anos (1995 a 2010).
Resumo:
Este trabalho compara modelos de séries temporais para a projeção de curto prazo da inflação brasileira, medida pelo Índice de Preços ao Consumidor Amplo (IPCA). Foram considerados modelos SARIMA de Box e Jenkins e modelos estruturais em espaço de estados, estimados pelo filtro de Kalman. Para a estimação dos modelos, foi utilizada a série do IPCA na base mensal, de março de 2003 a março de 2012. Os modelos SARIMA foram estimados no EVIEWS e os modelos estruturais no STAMP. Para a validação dos modelos para fora da amostra, foram consideradas as previsões 1 passo à frente para o período de abril de 2012 a março de 2013, tomando como base os principais critérios de avaliação de capacidade preditiva propostos na literatura. A conclusão do trabalho é que, embora o modelo estrutural permita, decompor a série em componentes com interpretação direta e estudá-las separadamente, além de incorporar variáveis explicativas de forma simples, o desempenho do modelo SARIMA para prever a inflação brasileira foi superior, no período e horizonte considerados. Outro importante aspecto positivo é que a implementação de um modelo SARIMA é imediata, e previsões a partir dele são obtidas de forma simples e direta.
Resumo:
O objetivo desta dissertação foi estimar a demanda de tratores agrícolas para o mercado brasileiro no triênio 2016-2018, utilizando-se para isto de técnicas de econometria de séries temporais, neste caso, modelos univariados da classe ARIMA e SARIMA e ou multivariados SARIMAX. Justifica-se esta pesquisa quando se observa a indústria de máquinas agrícolas no Brasil, dados os ciclos econômicos e outros fatores exógenos aos fundamentos econômicos da demanda, onde esta enfrenta muitos desafios. Dentre estes, a estimação de demanda se destaca, pois exerce forte impacto, por exemplo, no planejamento e custo de produção de curto e médio prazo, níveis de inventários, na relação com fornecedores de materiais e de mão de obra local, e por consequência na geração de valor para o acionista. Durante a fase de revisão bibliográfica foram encontrados vários trabalhos científicos que abordam o agronegócio e suas diversas áreas de atuação, porém, não foram encontrados trabalhos científicos publicados no Brasil que abordassem a previsão da demanda de tratores agrícolas no Brasil, o que serviu de motivação para agregar conhecimento à academia e valor ao mercado através deste. Concluiu-se, após testes realizados com diversos modelos que estão dispostos no texto e apêndices, que o modelo univariado SARIMA (15,1,1) (1,1,1) cumpriu as premissas estabelecidas nos objetivos específicos para escolha do modelo que melhor se ajusta aos dados, e foi escolhido então, como o modelo para estimação da demanda de tratores agrícolas no Brasil. Os resultados desta pesquisa apontam para uma demanda de tratores agrícolas no Brasil oscilando entre 46.000 e 49.000 unidades ano entre os anos de 2016 e 2018.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
INTRODUÇÃO: O termo fractal é derivado do latim fractus, que significa irregular ou quebrado, considerando a estrutura observada como tendo uma dimensão não-inteira. Há muitos estudos que empregaram a Dimensão Fractal (DF) como uma ferramenta de diagnóstico. Um dos métodos mais comuns para o seu estudo é a Box-plot counting (Método de contagem de caixas). OBJETIVO: O objetivo do estudo foi tentar estabelecer a contribuição da DF na quantificação da rejeição celular miocárdica após o transplante cardíaco. MÉTODOS: Imagens microscópicas digitalizadas foram capturadas na resolução 800x600 (aumento de 100x). A DF foi calculada com auxílio do software ImageJ, com adaptações. A classificação dos graus de rejeição foi de acordo com a Sociedade Internacional de Transplante Cardíaco e Pulmonar (ISHLT 2004). O relatório final do grau de rejeição foi confirmado e redefinido após exaustiva revisão das lâminas por um patologista experiente externo. No total, 658 lâminas foram avaliadas, com a seguinte distribuição entre os graus de rejeição (R): 335 (0R), 214 (1R), 70 (2R), 39 (3R). Os dados foram analisados estatisticamente com os testes Kruskal-Wallis e curvas ROC sendo considerados significantes valores de P < 0,05. RESULTADOS: Houve diferença estatística significativa entre os diferentes graus de rejeição com exceção da 3R versus 2R. A mesma tendência foi observada na aplicação da curva ROC. CONCLUSÃO: ADF pode contribuir para a avaliação da rejeição celular do miocárdio. Os valores mais elevados estiveram diretamente associados com graus progressivamente maiores de rejeição. Isso pode ajudar na tomada de decisão em casos duvidosos e naqueles que possam necessitar de intensificação da medicação imunossupressora.
Resumo:
Due to the increased incidence of skin cancer, computational methods based on intelligent approaches have been developed to aid dermatologists in the diagnosis of skin lesions. This paper proposes a method to classify texture in images, since it is an important feature for the successfully identification of skin lesions. For this is defined a feature vector, with the fractal dimension of images through the box-counting method (BCM), which is used with a SVM to classify the texture of the lesions in to non-irregular or irregular. With the proposed solution, we could obtain an accuracy of 72.84%. © 2012 AISTI.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Pós-graduação em Engenharia Mecânica - FEG