897 resultados para Blood flow and vascular resistance
Resumo:
Objective: Peripheral treatment with the cholinergic agonist pilocarpine increases salivary gland blood flow and induces intense salivation that is reduced by the central injection of moxonidine (aα-adrenoceptors/ imidazoline agonist). In the present study, we investigated the effects of the intracerebroventricular (i.c.v.) injection of pilocarpine alone or combined with moxonidine also injected i.c.v. On submandibular/sublingual gland (SSG) vascular resistance. In addition, the effects of these treatments on arterial pressure, heart rate and on mesenteric and hindlimb vascular resistance were also tested. Design: Male Holtzman rats with stainless steel cannula implanted into lateral ventricle and anaesthetized with urethane + α-chloralose were used. Results: Pilocarpine (500 nmol/1 μl) injected i.c.v. Reduced SSG vascular resistance and increased arterial pressure, heart rate and mesenteric vascular resistance. Contrary to pilocarpine alone, the combination of moxonidine (20 nmol/1 μl) and pilocarpine injected i.c.v. Increased SSG vascular resistance, an effect abolished by the pre-treatment with the α2-adrenoceptor antagonist yohimbine (320 nmol/2 μl). The increase in arterial pressure, heart rate and mesenteric resistance was not modified by the combination of moxonidine and pilocarpine i.c.v. Conclusion: These results suggest that the activation of central α2- adrenoceptors may oppose to the effects of central cholinergic receptor activation in the SSG vascular resistance. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
OBJECTIVE: Peripheral treatment with the cholinergic agonist pilocarpine increases salivary gland blood flow and induces intense salivation that is reduced by the central injection of moxonidine (α(2)-adrenoceptors/imidazoline agonist). In the present study, we investigated the effects of the intracerebroventricular (i.c.v.) injection of pilocarpine alone or combined with moxonidine also injected i.c.v. On submandibular/sublingual gland (SSG) vascular resistance. In addition, the effects of these treatments on arterial pressure, heart rate and on mesenteric and hindlimb vascular resistance were also tested. DESIGN: Male Holtzman rats with stainless steel cannula implanted into lateral ventricle and anaesthetized with urethane+α-chloralose were used. RESULTS: Pilocarpine (500nmol/1μl) injected i.c.v. Reduced SSG vascular resistance and increased arterial pressure, heart rate and mesenteric vascular resistance. Contrary to pilocarpine alone, the combination of moxonidine (20nmol/1μl) and pilocarpine injected i.c.v. Increased SSG vascular resistance, an effect abolished by the pre-treatment with the α(2)-adrenoceptor antagonist yohimbine (320nmol/2μl). The increase in arterial pressure, heart rate and mesenteric resistance was not modified by the combination of moxonidine and pilocarpine i.c.v. CONCLUSION: These results suggest that the activation of central α(2)-adrenoceptors may oppose to the effects of central cholinergic receptor activation in the SSG vascular resistance.
Resumo:
OBJECTIVE: To compare the effects of glimepiride and metformin on vascular reactivity, hemostatic factors and glucose and lipid profiles in patients with type 2 diabetes. METHODS: A prospective study was performed in 16 uncontrolled patients with diabetes previously treated with dietary intervention. The participants were randomized into metformin or glimepiride therapy groups. After four months, the patients were crossed over with no washout period to the alternative treatment for an additional four-month period on similar dosage schedules. The following variables were assessed before and after four months of each treatment: 1) fasting glycemia, insulin, catecholamines, lipid profiles and HbA(1) levels; 2) t-PA and PAI-1 (antigen and activity), platelet aggregation and fibrinogen and plasminogen levels; and 3) the flow indices of the carotid and brachial arteries. In addition, at the end of each period, a 12-hour metabolic profile was obtained after fasting and every 2 hours thereafter. RESULTS: Both therapies resulted in similar decreases in fasting glucose, triglyceride and norepinephrine levels, and they increased the fibrinolytic factor plasminogen but decreased t-PA activity. Metformin caused lower insulin and pro-insulin levels and higher glucagon levels and increased systolic carotid diameter and blood flow. Neither metformin nor glimepiride affected endothelial-dependent or endothelial-independent vasodilation of the brachial artery. CONCLUSIONS: Glimepiride and metformin were effective in improving glucose and lipid profiles and norepinephrine levels. Metformin afforded more protection against macrovascular diabetes complications, increased systolic carotid artery diameter and total and systolic blood flow, and decreased insulin levels. As both therapies increased plasminogen levels but reduced t-PA activity, a coagulation process was likely still ongoing.
Resumo:
Purpose: This study tested the role of K(+)- and Cl(-)-channels in retinal arteriolar smooth muscle in the regulation of retinal blood flow.
Methods: Studies were carried out in adult Male Hooded Lister rats. Selectivity of ion channel blockers was established using electrophysiological recordings from smooth muscle in isolated arterioles under voltage clamp conditions. Leukocyte velocity and retinal arteriolar diameters were measured in anesthetised animals using leukocyte fluorography and fluorescein angiography imaging with a confocal scanning laser ophthalmoscope. These values were used to estimate volumetric flow, which was compared between control conditions and following intravitreal injections of ion channel blockers, either alone or in combination with the vasoconstrictor potent Endothelin 1 (Et1).
Results: Voltage activated K(+)-current (IKv) was inhibited by correolide, large conductance (BK) Ca(2+)-activated K(+)-current (IKCa) by Penitrem A, and Ca(2+)-activated Cl(-)-current (IClCa) by disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS). Intravitreal injections (10µl) of DIDS (estimated intraocular concentration 10mM) increased flow by 22%, whereas the BK-blockers Penitrem A (1µM) and iberiotoxin (4µM), and the IKv-inhibitor correolide (40µM) all decreased resting flow by approximately 10%. Et1 (104nM) reduced flow by almost 65%. This effect was completely reversed by DIDS but was unaffected by Penitrem A, iberiotoxin or correolide.
Conclusions: These results suggest that Cl(-)-channels in retinal arteriolar smooth muscle limit resting blood flow and play an obligatory role in Et1 responses. K(+)-channel activity promotes basal flow but exerts little modifying effect on the Et1 response. Cl(-)-channels may be appropriate molecular targets in retinal pathologies characterised by increased Et1 activity and reduced blood flow.
Resumo:
Introduction. Hypovolemia from hemorrhage evokes protective compensatory reactions, such as the renin-angiotensin system, which interferes in the clearance function and can lead to ischemia. This study was designed to evaluate the effects of glibenclamide, a K-ATP(+) channel blocker, on renal function and histology in rats in a state of hemorrhagic shock under sevoflurane anesthesia. Material and Methods. Twenty Wistar rats were randomized into two groups of 10 animals each (G1 and G2), only one of which (G2) received intravenous glibenclamide (1 mu g.g(-1)), 60 min before bleeding was begun. Both groups were anesthetized with sevoflurane and kept on spontaneous respiration with oxygen-air, while being bled of 30% of volemia in three stages with 10 min intervals. There was an evaluation of renal function-sodium para-aminohippurate and iothalamate clearances, filtration fraction, renal blood flow, renal vascular resistance-and renal histology. Renal function attributes were evaluated at three moments: M1 and M2, coinciding with the first and third stages of bleeding; and M3, 30 min after M2, when the animals were subjected to bilateral nephrectomy before being sacrificed. Results. Significant differences were found in para-aminohippurate clearance, G1 < G2, and higher renal vascular resistance values were observed in G1. Histological examination showed the greater vulnerability of kidneys exposed to sevoflurane alone (G1) with higher scores of vascular and tubular dilatation. There were vascular congestion and tubular vacuolization only in G1. Necrosis and signs of tubular regeneration did not differ in both groups. Conclusion. Treatment with glibenclamide attenuated acutely the renal histological changes after hemorrhage in rats under sevoflurane anesthesia.
Resumo:
OBJETIVO: Cerca de 50% de indicações de diálise em insuficiência renal aguda vêm de problemas do perioperatório. Alterações na hemodinâmica intra-operatória levam a vasoconstrição renal e hipoperfusão. Estudos prévios não definiram o papel renal da dexmedetomidina em hemorragia. Foram estudados os efeitos da dexmedetomidina na função e histologia renais, em ratos, após hemorragia aguda. MÉTODOS: Estudo encoberto com 20 ratos Wistar, anestesiados com pentobarbital sódico intraperitoneal, 50 mg. kg-1, divididos aleatoriamente em 2 grupos sob sangramento de 30% da volemia: GD - dexmedetomidina iv, 3 µg. kg-1 (10 min), e infusão contínua, 3 µg. kg-1. h-1; GC - pentobarbital. Para estimar depuração renal, administraram-se para-aminohipurato e iotalamato de sódio. Atributos estudados: freqüência cardíaca, pressão arterial média, temperatura retal, hematócrito, depuração de para-aminohipurato e iotalamato, fração de filtração, fluxo sangüíneo renal, resistência vascular renal, análise histológica dos rins. RESULTADOS: em GD, houve valores menores de freqüência cardíaca, pressão arterial média e resistência vascular, mas valores maiores de depuração de iotalamato e fração de filtração. A depuração de para-aminohipurato e o fluxo sangüíneo foram similares nos grupos. As alterações histológicas foram compatíveis com isquemia e houve maior dilatação tubular em GD. CONCLUSÃO: em ratos, após hemorragia aguda, a dexmedetomidina determinou melhor função renal, porém maior dilatação tubular.
Resumo:
[EN] 1. The present study examined whether the blood flow to exercising muscles becomes reduced when cardiac output and systemic vascular conductance decline with dehydration during prolonged exercise in the heat. A secondary aim was to determine whether the upward drift in oxygen consumption (VO2) during prolonged exercise is confined to the active muscles. 2. Seven euhydrated, endurance-trained cyclists performed two bicycle exercise trials in the heat (35 C; 40-50 % relative humidity; 61 +/- 2 % of maximal VO2), separated by 1 week. During the first trial (dehydration trial, DE), they bicycled until volitional exhaustion (135 +/- 4 min, mean +/- s.e.m.), while developing progressive dehydration and hyperthermia (3.9 +/- 0.3 % body weight loss; 39.7 +/- 0.2 C oesophageal temperature, Toes). In the second trial (control trial), they bicycled for the same period of time while maintaining euhydration by ingesting fluids and stabilizing Toes at 38.2 +/- 0.1 C after 30 min exercise. 3. In both trials, cardiac output, leg blood flow (LBF), vascular conductance and VO2 were similar after 20 min exercise. During the 20 min-exhaustion period of DE, cardiac output, LBF and systemic vascular conductance declined significantly (8-14 %; P < 0.05) yet muscle vascular conductance was unaltered. In contrast, during the same period of control, all these cardiovascular variables tended to increase. After 135 +/- 4 min of DE, the 2.0 +/- 0.6 l min-1 lower blood flow to the exercising legs accounted for approximately two-thirds of the reduction in cardiac output. Blood flow to the skin also declined markedly as forearm blood flow was 39 +/- 8 % (P < 0.05) lower in DE vs. control after 135 +/- 4 min. 4. In both trials, whole body VO2 and leg VO2 increased in parallel and were similar throughout exercise. The reduced leg blood flow in DE was accompanied by an even greater increase in femoral arterial-venous O2 (a-vO2) difference. 5. It is concluded that blood flow to the exercising muscles declines significantly with dehydration, due to a lowering in perfusion pressure and systemic blood flow rather than increased vasoconstriction. Furthermore, the progressive increase in oxygen consumption during exercise is confined to the exercising skeletal muscles.
Resumo:
Intracerebral contusions can lead to regional ischemia caused by extensive release of excitotoxic aminoacids leading to increased cytotoxic brain edema and raised intracranial pressure. rCBF measurements might provide further information about the risk of ischemia within and around contusions. Therefore, the aim of the presented study was to compare the intra- and perilesional rCBF of hemorrhagic, non-hemorrhagic and mixed intracerebral contusions. In 44 patients, 60 stable Xenon-enhanced CT CBF-studies were performed (EtCO2 30 +/- 4 mmHg SD), initially 29 hours (39 studies) and subsequent 95 hours after injury (21 studies). All lesions were classified according to localization and lesion type using CT/MRI scans. The rCBF was calculated within and 1-cm adjacent to each lesion in CT-isodens brain. The rCBF within all contusions (n = 100) of 29 +/- 11 ml/100 g/min was significantly lower (p < 0.0001, Mann-Whitney U) compared to perilesional rCBF of 44 +/- 12 ml/100 g/min and intra/perilesional correlation was 0.4 (p < 0.0005). Hemorrhagic contusions showed an intra/perilesional rCBF of 31 +/- 11/44 +/- 13 ml/100 g/min (p < 0.005), non-hemorrhagic contusions 35 +/- 13/46 +/- 10 ml/100 g/min (p < 0.01). rCBF in mixed contusions (25 +/- 9/44 +/- 12 ml/100 g/min, p < 0.0001) was significantly lower compared to hemorrhagic and non-hemorrhagic contusions (p < 0.02). Intracontusional rCBF is significantly reduced to 29 +/- 11 ml/100 g/min but reduced below ischemic levels of 18 ml/100 g/min in only 16% of all contusions. Perilesional CBF in CT normal appearing brain closed to contusions is not critically reduced. Further differentiation of contusions demonstrates significantly lower rCBF in mixed contusions (defined by both hyper- and hypodense areas in the CT-scan) compared to hemorrhagic and non-hemorrhagic contusions. Mixed contusions may evolve from hemorrhagic contusions with secondary increased perilesional cytotoxic brain edema leading to reduced cerebral blood flow and altered brain metabolism. Therefore, the treatment of ICP might be individually modified by the measurement of intra- and pericontusional cerebral blood.
Resumo:
Consistent clinical and experimental evidence points to the involvement of two enzymatic systems (the matrix metalloproteinases-MMPs and the protein crosslinking enzymes transglutaminases) in prominent physiologic roles of endothelium in the maintenance of vascular wall integrity, regulation of blood flow and clotting, and exchange of molecules and cells between the extra- and the intravascular space. These issues are briefly discussed in relation to differentiation of the endothelium within the vascular system, mechanisms of molecular regulation and the effects of their disruption in pathology. While the roles of MMPs are now understood in detail and represent a promising target for pharmacological interventions, much less is known on the roles of transglutaminases in vascular biology. These last enzymes are expressed at extremely high levels in endothelial cells and are involved in cell matrix interactions important to angiogenesis and apoptosis/cell death of endothelial cells, in the control of blood clotting and and in the transfer of molecules and cells across the vascular walls. On the clinical side, these properties are relevant in vascular inflammatory processes, atherosclerosis and tumor metastasis. We summarise the large body of evidence available in this perspective and discuss its implications for the development of new therapeutic strategies.
Resumo:
Understanding the dynamics of blood cells is a crucial element to discover biological mechanisms, to develop new efficient drugs, design sophisticated microfluidic devices, for diagnostics. In this work, we focus on the dynamics of red blood cells in microvascular flow. Microvascular blood flow resistance has a strong impact on cardiovascular function and tissue perfusion. The flow resistance in microcirculation is governed by flow behavior of blood through a complex network of vessels, where the distribution of red blood cells across vessel cross-sections may be significantly distorted at vessel bifurcations and junctions. We investigate the development of blood flow and its resistance starting from a dispersed configuration of red blood cells in simulations for different hematocrits, flow rates, vessel diameters, and aggregation interactions between red blood cells. Initially dispersed red blood cells migrate toward the vessel center leading to the formation of a cell-free layer near the wall and to a decrease of the flow resistance. The development of cell-free layer appears to be nearly universal when scaled with a characteristic shear rate of the flow, which allows an estimation of the length of a vessel required for full flow development, $l_c \approx 25D$, with vessel diameter $D$. Thus, the potential effect of red blood cell dispersion at vessel bifurcations and junctions on the flow resistance may be significant in vessels which are shorter or comparable to the length $l_c$. The presence of aggregation interactions between red blood cells lead in general to a reduction of blood flow resistance. The development of the cell-free layer thickness looks similar for both cases with and without aggregation interactions. Although, attractive interactions result in a larger cell-free layer plateau values. However, because the aggregation forces are short-ranged at high enough shear rates ($\bar{\dot{\gamma}} \gtrsim 50~\text{s}^{-1}$) aggregation of red blood cells does not bring a significant change to the blood flow properties. Also, we develop a simple theoretical model which is able to describe the converged cell-free-layer thickness with respect to flow rate assuming steady-state flow. The model is based on the balance between a lift force on red blood cells due to cell-wall hydrodynamic interactions and shear-induced effective pressure due to cell-cell interactions in flow. We expect that these results can also be used to better understand the flow behavior of other suspensions of deformable particles such as vesicles, capsules, and cells. Finally, we investigate segregation phenomena in blood as a two-component suspension under Poiseuille flow, consisting of red blood cells and target cells. The spatial distribution of particles in blood flow is very important. For example, in case of nanoparticle drug delivery, the particles need to come closer to microvessel walls, in order to adhere and bring the drug to a target position within the microvasculature. Here we consider that segregation can be described as a competition between shear-induced diffusion and the lift force that pushes every soft particle in a flow away from the wall. In order to investigate the segregation, on one hand, we have 2D DPD simulations of red blood cells and target cell of different sizes, on the other hand the Fokker-Planck equation for steady state. For the equation we measure force profile, particle distribution and diffusion constant across the channel. We compare simulation results with those from the Fokker-Planck equation and find a very good correspondence between the two approaches. Moreover, we investigate the diffusion behavior of target particles for different hematocrit values and shear rates. Our simulation results indicate that diffusion constant increases with increasing hematocrit and depends linearly on shear rate. The third part of the study describes development of a simulation model of complex vascular geometries. The development of the model is important to reproduce vascular systems of small pieces of tissues which might be gotten from MRI or microscope images. The simulation model of the complex vascular systems might be divided into three parts: modeling the geometry, developing in- and outflow boundary conditions, and simulation domain decomposition for an efficient computation. We have found that for the in- and outflow boundary conditions it is better to use the SDPD fluid than DPD one because of the density fluctuations along the channel of the latter. During the flow in a straight channel, it is difficult to control the density of the DPD fluid. However, the SDPD fluid has not that shortcoming even in more complex channels with many branches and in- and outflows because the force acting on particles is calculated also depending on the local density of the fluid.
Resumo:
Abnormal maternal inflammation during pregnancy is linked to complications such as preeclampsia and fetal growth restriction. There is growing evidence that insulin resistance is also associated with a heightened inflammatory state, and is linked to pregnancy complications such as gestational diabetes. This study tested the hypothesis that abnormal inflammation during pregnancy is causally linked to elevations in blood glucose and insulin resistance. To induce a state of abnormal systemic inflammation, bacterial lipopolysaccharide (LPS) was administered to pregnant rats on gestational days (GD) 13.5-16.5. Dams treated with LPS exhibited an abnormal immune response characterized by an elevation in white blood cells, which was linked to reduced fetal weight and increased glucose levels over pregnancy. Abnormal inflammation is characterized by increased levels of circulating pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF) and interleukin-6, which contribute to insulin resistance by inhibiting the insulin signalling pathway. TNF in particular induces a serine phosphorylation (pSer307) of insulin receptor substrate 1 (IRS-1). In our model, insulin resistance was assessed by measuring the extent of pSer307 of IRS-1 and total IRS-1 expression in skeletal muscle, as well as changes in metabolic parameters and pancreas tissue morphology associated with insulin resistance. LPS-treated dams exhibited a significant reduction in IRS-1 expression, elevation in fasting glucose levels, and reduction in insulin sensitivity indices. There were also biologically relevant increases in fasting plasma insulin levels and insulin resistance indices, but not pSer307 of IRS-1 and pancreatic islet size. To determine whether inflammation plays a role in reducing insulin signalling and the other changes associated with LPS administration, etanercept, a TNF antagonist, was administered on GDs 13.5 and 15.5 prior to LPS injections. With the exception of IRS-1 expression, in rats treated with etanercept all of the measured parameters remained at the levels observed in saline controls, indicating a link between abnormal inflammation and insulin resistance. The results of this study support the practice of monitoring the inflammatory conditions of the mother prior to and during pregnancy, and support further investigation into the potential use of anti-inflammatory agents during pregnancy in women at risk of insulin resistance and gestational diabetes.
Resumo:
Aims: The premise that intrauterine malnutrition plays an important role in the development of cardiovascular and renal diseases implies that these disorders can be programmed during fetal life. Here, we analyzed the hypothesis that supplementation with mixed antioxidant vitamins and essential mineral in early life could prevent later elevation of blood pressure and vascular and renal dysfunction associated with intrauterine malnutrition. Main methods: For this, female Wistar rats were randomly divided into three groups on day 1 of pregnancy: control fed standard chow ad libitum; restricted group fed 50% of the ad libitum intake and a restricted plus micronutrient cocktail group treated daily with a combination of micronutrient (selenium, folate, vitamin C and vitamin E) by oral gavage. Key findings: In adult offspring, renal function and glomerular number were impaired by intrauterine malnutrition. and the prenatal micronutrient treatment did not prevent it. However, increased blood pressure and reduced endothelium-dependent vasodilation were prevented by the micronutrient prenatal treatment. Intrauterine malnutrition also led to reduced NO production associated with increased superoxide generation, and these parameters were fully normalized by this prenatal treatment. Significance: Our current findings indicate that programming alterations during fetal life can be prevented by interventions during the prenatal period, and that disturbance in availability of both antioxidant vitamins and mineral may play a crucial role in determining the occurrence of long-term cardiovascular injury. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
JUSTIFICATIVA E OBJETIVOS: As soluções hipertônicas de cloreto de sódio, associadas ou não a colóides hiperoncóticos, podem ser eficazes em proteger o rim em situações de hipovolemia. O objetivo deste estudo foi verificar, em cães, o real benefício dessas soluções sobre a função renal, em vigência de hipovolemia e isquemia do órgão. MÉTODO: em 24 cães, anestesiados com pentobarbital sódico, submetidos à nefrectomia direita e à expansão volêmica com solução de Ringer (1 ml.kg-1.min-1), foram observadas possíveis alterações renais morfo-funcionais após hemorragia de 20 ml.kg-1 e trinta minutos de total isquemia renal esquerda, com posterior reperfusão, além da repercussão renal da administração de soluções de cloreto de sódio 7,5% (SH) e esta em dextran 70 a 6% (SHD). Atributos estudados: FC, PAM, pressão de veia cava inferior, fluxo sangüíneo renal, resistência vascular renal, hematócrito, Na+, K+, osmolaridade plasmática, PaO2, PaCO2 e pH, depuração (para-aminohipurato de sódio - PAH-1, creatinina, osmolar, água livre, Na+, K+), fração de filtração, volume e osmolaridade urinários, excreções urinárias e fracionárias de Na+ e K+ e exame histopatológico do rim. Os atributos foram estudados em três grupos (G1, G2 e G3) e em cinco momentos. RESULTADOS: Houve elevação estatisticamente significativa da pressão arterial média em G2 e G3, da resistência vascular renal em G1, do fluxo sangüíneo renal e da depuração de PAH em G3, da excreção fracionária de Na+ em G2 e G3, das depurações de creatinina, osmolar, de água livre e de Na+ e K+, da excreção urinária de Na+ e K+ e do volume urinário em G3. CONCLUSÕES: A SHD administrada 15 minutos após hemorragia moderada e 30 minutos antes de insulto isquêmico de 30 minutos foi eficiente em proteger o rim de cães das repercussões da isquemia-reperfusão. Não foi constatada alteração histopatológica renal à microscopia óptica.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)