820 resultados para Black-Scholes implicit volatility
Resumo:
Mestrado em Controlo de Gestão dos Negócios
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics
Resumo:
By means of classical Itô's calculus we decompose option prices asthe sum of the classical Black-Scholes formula with volatility parameterequal to the root-mean-square future average volatility plus a term dueby correlation and a term due to the volatility of the volatility. Thisdecomposition allows us to develop first and second-order approximationformulas for option prices and implied volatilities in the Heston volatilityframework, as well as to study their accuracy. Numerical examples aregiven.
Resumo:
In this study we used market settlement prices of European call options on stock index futures to extract implied probability distribution function (PDF). The method used produces a PDF of returns of an underlying asset at expiration date from implied volatility smile. With this method, the assumption of lognormal distribution (Black-Scholes model) is tested. The market view of the asset price dynamics can then be used for various purposes (hedging, speculation). We used the so called smoothing approach for implied PDF extraction presented by Shimko (1993). In our analysis we obtained implied volatility smiles from index futures markets (S&P 500 and DAX indices) and standardized them. The method introduced by Breeden and Litzenberger (1978) was then used on PDF extraction. The results show significant deviations from the assumption of lognormal returns for S&P500 options while DAX options mostly fit the lognormal distribution. A deviant subjective view of PDF can be used to form a strategy as discussed in the last section.
Resumo:
Tämän tutkimuksen tarkoituksena on selvittää pystytäänkö OMX 25 Helsinki kohde-etuusindeksin warranttien hintoja ennustamaan käyttämällä erilaisia optiohinnoittelumalleja. Tutkielman aineisto koostuu OMXH25-indeksiä seuraavien warranttien hinta-aikasarjatiedoista vuosilta 2009-2011. Tutkimuksessa käytettiin kolmea eri hinnoittelumallia warranttien hinnoitteluvirheiden tutkimiseen. Perinteistä Black-Scholes-hinnoittelumallia käytettiin siten, että warranttiaineistosta joh-dettu implisiittinen volatiliteetti regressoitiin maturiteetin ja toteutushinnan mu-kaan, jonka jälkeen regression perusteella valittiin kulloiseenkin tilanteeseen sopiva volatiliteettiestimaatti. Black-Scholes-mallin lisäksi tutkimuksessa käy-tettiin kahta GARCH-pohjaista optiohinnoittelumallia. Mallien estimoimia hin-toja verrattiin markkinoiden warranttihintoihin. Tulosten perusteella voitiin todeta, että mallit onnistuvat hinnoittelemaan war-rantteja paremmin lyhyen ajan päähän mallien kalibroinnista. Tulokset vaihte-livat suuresti eri vuosien välillä eikä minkään käytetyn mallin nähty suoriutu-van systemaattisesti muita malleja paremmin.
Resumo:
O VIX Volatility Index surgiu como uma alternativa no cálculo da volatilidade implícita, visando mitigar alguns problemas encontrados em modelos da família Black-Scholes. Este tipo de volatilidade é tida como a melhor previsora da volatilidade futura, dado que as expectativas dos operadores de opções se encontram embutidas em seus valores. O objetivo deste trabalho é testar se o VIX apresenta maior poder preditivo e informações relevantes não presentes em modelos de séries temporais para variáveis não-negativas, tratadas através do modelo de erro multiplicativo. Os resultados indicam que o VIX apresenta maior poder preditivo em períodos de estabilidade econômica, mas não contém informação relevante frente à real volatilidade. Em períodos de crise econômica o resultado se altera, com o VIX apresentando o mesmo poder explicativo, mas contém informações relevantes no curto prazo.
Resumo:
Este trabalho tem como objetivo verificar se o mercado de opções da Petrobras PN (PETR4) é ineficiente na forma fraca, ou seja, se as informações públicas estão ou não refletidas nos preços dos ativos. Para isso, tenta-se obter lucro sistemático por meio da estratégia Delta-Gama-Neutra que utiliza a ação preferencial e as opções de compra da empresa. Essa ação foi escolhida, uma vez que as suas opções tinham alto grau de liquidez durante todo o período estudado (01/10/2012 a 31/03/2013). Para a realização do estudo, foram consideradas as ordens de compra e venda enviadas tanto para o ativo-objeto quanto para as opções de forma a chegar ao livro de ofertas (book) real de todos os instrumentos a cada cinco minutos. A estratégia foi utilizada quando distorções entre a Volatilidade Implícita, calculada pelo modelo Black & Scholes, e a volatilidade calculada por alisamento exponencial (EWMA – Exponentially Weighted Moving Average) foram observadas. Os resultados obtidos mostraram que o mercado de opções de Petrobras não é eficiente em sua forma fraca, já que em 371 operações realizadas durante esse período, 85% delas foram lucrativas, com resultado médio de 0,49% e o tempo médio de duração de cada operação sendo pouco menor que uma hora e treze minutos.
Resumo:
There is a well-developed framework, the Black-Scholes theory, for the pricing of contracts based on the future prices of certain assets, called options. This theory assumes that the probability distribution of the returns of the underlying asset is a Gaussian distribution. However, it is observed in the market that this hypothesis is flawed, leading to the introduction of a fudge factor, the so-called volatility smile. Therefore, it would be interesting to explore extensions of the Black-Scholes theory to non-Gaussian distributions. In this paper, we provide an explicit formula for the price of an option when the distributions of the returns of the underlying asset is parametrized by an Edgeworth expansion, which allows for the introduction of higher independent moments of the probability distribution, namely skewness and kurtosis. We test our formula with options in the Brazilian and American markets, showing that the volatility smile can be reduced. We also check whether our approach leads to more efficient hedging strategies of these instruments. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the first chapter, we test some stochastic volatility models using options on the S&P 500 index. First, we demonstrate the presence of a short time-scale, on the order of days, and a long time-scale, on the order of months, in the S&P 500 volatility process using the empirical structure function, or variogram. This result is consistent with findings of previous studies. The main contribution of our paper is to estimate the two time-scales in the volatility process simultaneously by using nonlinear weighted least-squares technique. To test the statistical significance of the rates of mean-reversion, we bootstrap pairs of residuals using the circular block bootstrap of Politis and Romano (1992). We choose the block-length according to the automatic procedure of Politis and White (2004). After that, we calculate a first-order correction to the Black-Scholes prices using three different first-order corrections: (i) a fast time scale correction; (ii) a slow time scale correction; and (iii) a multiscale (fast and slow) correction. To test the ability of our model to price options, we simulate options prices using five different specifications for the rates or mean-reversion. We did not find any evidence that these asymptotic models perform better, in terms of RMSE, than the Black-Scholes model. In the second chapter, we use Brazilian data to compute monthly idiosyncratic moments (expected skewness, realized skewness, and realized volatility) for equity returns and assess whether they are informative for the cross-section of future stock returns. Since there is evidence that lagged skewness alone does not adequately forecast skewness, we estimate a cross-sectional model of expected skewness that uses additional predictive variables. Then, we sort stocks each month according to their idiosyncratic moments, forming quintile portfolios. We find a negative relationship between higher idiosyncratic moments and next-month stock returns. The trading strategy that sells stocks in the top quintile of expected skewness and buys stocks in the bottom quintile generates a significant monthly return of about 120 basis points. Our results are robust across sample periods, portfolio weightings, and to Fama and French (1993)’s risk adjustment factors. Finally, we identify a return reversal of stocks with high idiosyncratic skewness. Specifically, stocks with high idiosyncratic skewness have high contemporaneous returns. That tends to reverse, resulting in negative abnormal returns in the following month.
Resumo:
The literature on bond markets and interest rates has focused largely on the term structure of interest rates, specifically, on the so-called expectations hypothesis. At the same time, little is known about the nature of the spread of the interest rates in the money market beyond the fact that such spreads are generally unstable. However, with the evolution of complex financial instruments, it has become imperative to identify the time series process that can help one accurately forecast such spreads into the future. This article explores the nature of the time series process underlying the spread between three-month and one-year US rates, and concludes that the movements in this spread over time is best captured by a GARCH(1,1) process. It also suggests the use of a relatively long term measure of interest rate volatility as an explanatory variable. This exercise has gained added importance in view of the revelation that GARCH based estimates of option prices consistently outperform the corresponding estimates based on the stylized Black-Scholes algorithm.
Resumo:
Ennek a cikknek az a célja, hogy áttekintést adjon annak a folyamatnak néhány főbb állomásáról, amit Black, Scholes és Merton opcióárazásról írt cikkei indítottak el a 70-es évek elején, és ami egyszerre forradalmasította a fejlett nyugati pénzügyi piacokat és a pénzügyi elméletet. / === / This review article compares the development of financial theory within and outside Hungary in the last three decades starting with the Black-Scholes revolution. Problems like the term structure of interest rate volatilities which is in the focus of many research internationally has not received the proper attention among the Hungarian economists. The article gives an overview of no-arbitrage pricing, the partial differential equation approach and the related numerical techniques, like the lattice methods in pricing financial derivatives. The relevant concepts of the martingal approach are overviewed. There is a special focus on the HJM framework of the interest rate development. The idea that the volatility and the correlation can be traded is a new horizon to the Hungarian capital market.
Resumo:
Os Projectos de Investimento desempenham um importante papel no crescimento económico-social dos países, proporcionando emprego e desenvolvimento tecnológico. Na óptica dos projectos inovadores, concretamente no sector das energias renováveis, acarretam elevados investimentos, numa base temporal de longo prazo. Nestes casos as decisões estratégicas assumem um papel determinante, assim, o principal objectivo desta dissertação é a utilização das Opções Reais como métrica de avaliação dos projectos de investimento. A análise e avaliação dos projectos implica em si incerteza nas previsões, desta forma, as Opções Reais minimizam o risco associado à incerteza através da inclusão da flexibilidade no processo de avaliação. A primeira parte da dissertação consiste na contextualização energética mundial e nacional, ao nível da energia primária e das energias renováveis, com incidência na energia eólica. A segunda consiste na introdução teórica dos projectos de investimento e dos conceitos inerentes às Opções Financeiras e às Opções Reais. Por último, apresenta-se um caso de estudo de construção de três parques eólicos e as consequentes decisões de investimento concluindo que os modelos de avaliação das Opções Reais proporcionam alternativas e interdependência em investimentos futuros.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Master's Double Degree in Finance from the NOVA School of Business and Economics / Masters Degree in Economics from Insper
Resumo:
The shift towards a knowledge-based economy has inevitably prompted the evolution of patent exploitation. Nowadays, patent is more than just a prevention tool for a company to block its competitors from developing rival technologies, but lies at the very heart of its strategy for value creation and is therefore strategically exploited for economic pro t and competitive advantage. Along with the evolution of patent exploitation, the demand for reliable and systematic patent valuation has also reached an unprecedented level. However, most of the quantitative approaches in use to assess patent could arguably fall into four categories and they are based solely on the conventional discounted cash flow analysis, whose usability and reliability in the context of patent valuation are greatly limited by five practical issues: the market illiquidity, the poor data availability, discriminatory cash-flow estimations, and its incapability to account for changing risk and managerial flexibility. This dissertation attempts to overcome these impeding barriers by rationalizing the use of two techniques, namely fuzzy set theory (aiming at the first three issues) and real option analysis (aiming at the last two). It commences with an investigation into the nature of the uncertainties inherent in patent cash flow estimation and claims that two levels of uncertainties must be properly accounted for. Further investigation reveals that both levels of uncertainties fall under the categorization of subjective uncertainty, which differs from objective uncertainty originating from inherent randomness in that uncertainties labelled as subjective are highly related to the behavioural aspects of decision making and are usually witnessed whenever human judgement, evaluation or reasoning is crucial to the system under consideration and there exists a lack of complete knowledge on its variables. Having clarified their nature, the application of fuzzy set theory in modelling patent-related uncertain quantities is effortlessly justified. The application of real option analysis to patent valuation is prompted by the fact that both patent application process and the subsequent patent exploitation (or commercialization) are subject to a wide range of decisions at multiple successive stages. In other words, both patent applicants and patentees are faced with a large variety of courses of action as to how their patent applications and granted patents can be managed. Since they have the right to run their projects actively, this flexibility has value and thus must be properly accounted for. Accordingly, an explicit identification of the types of managerial flexibility inherent in patent-related decision making problems and in patent valuation, and a discussion on how they could be interpreted in terms of real options are provided in this dissertation. Additionally, the use of the proposed techniques in practical applications is demonstrated by three fuzzy real option analysis based models. In particular, the pay-of method and the extended fuzzy Black-Scholes model are employed to investigate the profitability of a patent application project for a new process for the preparation of a gypsum-fibre composite and to justify the subsequent patent commercialization decision, respectively; a fuzzy binomial model is designed to reveal the economic potential of a patent licensing opportunity.
Resumo:
Cette thèse porte sur les questions d'évaluation et de couverture des options dans un modèle exponentiel-Lévy avec changements de régime. Un tel modèle est construit sur un processus additif markovien un peu comme le modèle de Black- Scholes est basé sur un mouvement Brownien. Du fait de l'existence de plusieurs sources d'aléa, nous sommes en présence d'un marché incomplet et ce fait rend inopérant les développements théoriques initiés par Black et Scholes et Merton dans le cadre d'un marché complet. Nous montrons dans cette thèse que l'utilisation de certains résultats de la théorie des processus additifs markoviens permet d'apporter des solutions aux problèmes d'évaluation et de couverture des options. Notamment, nous arrivons à caracté- riser la mesure martingale qui minimise l'entropie relative à la mesure de probabilit é historique ; aussi nous dérivons explicitement sous certaines conditions, le portefeuille optimal qui permet à un agent de minimiser localement le risque quadratique associé. Par ailleurs, dans une perspective plus pratique nous caract érisons le prix d'une option Européenne comme l'unique solution de viscosité d'un système d'équations intégro-di érentielles non-linéaires. Il s'agit là d'un premier pas pour la construction des schémas numériques pour approcher ledit prix.