983 resultados para Biometric identification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Confronting the rapidly increasing, worldwide reliance on biometric technologies to surveil, manage, and police human beings, my dissertation Informatic Opacity: Biometric Facial Recognition and the Aesthetics and Politics of Defacement charts a series of queer, feminist, and anti-racist concepts and artworks that favor opacity as a means of political struggle against surveillance and capture technologies in the 21st century. Utilizing biometric facial recognition as a paradigmatic example, I argue that today's surveillance requires persons to be informatically visible in order to control them, and such visibility relies upon the production of technical standardizations of identification to operate globally, which most vehemently impact non- normative, minoritarian populations. Thus, as biometric technologies turn exposures of the face into sites of governance, activists and artists strive to make the face biometrically illegible and refuse the political recognition biometrics promises through acts of masking, escape, and imperceptibility. Although I specifically describe tactics of making the face unrecognizable as "defacement," I broadly theorize refusals to visually cohere to digital surveillance and capture technologies' gaze as "informatic opacity," an aesthetic-political theory and practice of anti- normativity at a global, technical scale whose goal is maintaining the autonomous determination of alterity and difference by evading the quantification, standardization, and regulation of identity imposed by biometrics and the state. My dissertation also features two artworks: Facial Weaponization Suite, a series of masks and public actions, and Face Cages, a critical, dystopic installation that investigates the abstract violence of biometric facial diagramming and analysis. I develop an interdisciplinary, practice-based method that pulls from contemporary art and aesthetic theory, media theory and surveillance studies, political and continental philosophy, queer and feminist theory, transgender studies, postcolonial theory, and critical race studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Electrónica e Telecomunicações

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Handwriting is an acquired tool used for communication of one's observations or feelings. Factors that inuence a person's handwriting not only dependent on the individual's bio-mechanical constraints, handwriting education received, writing instrument, type of paper, background, but also factors like stress, motivation and the purpose of the handwriting. Despite the high variation in a person's handwriting, recent results from different writer identification studies have shown that it possesses sufficient individual traits to be used as an identification method. Handwriting as a behavioral biometric has had the interest of researchers for a long time. But recently it has been enjoying new interest due to an increased need and effort to deal with problems ranging from white-collar crime to terrorist threats. The identification of the writer based on a piece of handwriting is a challenging task for pattern recognition. The main objective of this thesis is to develop a text independent writer identification system for Malayalam Handwriting. The study also extends to developing a framework for online character recognition of Grantha script and Malayalam characters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biometrics deals with the physiological and behavioral characteristics of an individual to establish identity. Fingerprint based authentication is the most advanced biometric authentication technology. The minutiae based fingerprint identification method offer reasonable identification rate. The feature minutiae map consists of about 70-100 minutia points and matching accuracy is dropping down while the size of database is growing up. Hence it is inevitable to make the size of the fingerprint feature code to be as smaller as possible so that identification may be much easier. In this research, a novel global singularity based fingerprint representation is proposed. Fingerprint baseline, which is the line between distal and intermediate phalangeal joint line in the fingerprint, is taken as the reference line. A polygon is formed with the singularities and the fingerprint baseline. The feature vectors are the polygonal angle, sides, area, type and the ridge counts in between the singularities. 100% recognition rate is achieved in this method. The method is compared with the conventional minutiae based recognition method in terms of computation time, receiver operator characteristics (ROC) and the feature vector length. Speech is a behavioural biometric modality and can be used for identification of a speaker. In this work, MFCC of text dependant speeches are computed and clustered using k-means algorithm. A backpropagation based Artificial Neural Network is trained to identify the clustered speech code. The performance of the neural network classifier is compared with the VQ based Euclidean minimum classifier. Biometric systems that use a single modality are usually affected by problems like noisy sensor data, non-universality and/or lack of distinctiveness of the biometric trait, unacceptable error rates, and spoof attacks. Multifinger feature level fusion based fingerprint recognition is developed and the performances are measured in terms of the ROC curve. Score level fusion of fingerprint and speech based recognition system is done and 100% accuracy is achieved for a considerable range of matching threshold

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biometrics has become important in security applications. In comparison with many other biometric features, iris recognition has very high recognition accuracy because it depends on iris which is located in a place that still stable throughout human life and the probability to find two identical iris's is close to zero. The identification system consists of several stages including segmentation stage which is the most serious and critical one. The current segmentation methods still have limitation in localizing the iris due to circular shape consideration of the pupil. In this research, Daugman method is done to investigate the segmentation techniques. Eyelid detection is another step that has been included in this study as a part of segmentation stage to localize the iris accurately and remove unwanted area that might be included. The obtained iris region is encoded using haar wavelets to construct the iris code, which contains the most discriminating feature in the iris pattern. Hamming distance is used for comparison of iris templates in the recognition stage. The dataset which is used for the study is UBIRIS database. A comparative study of different edge detector operator is performed. It is observed that canny operator is best suited to extract most of the edges to generate the iris code for comparison. Recognition rate of 89% and rejection rate of 95% is achieved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biometrics is an efficient technology with great possibilities in the area of security system development for official and commercial applications. The biometrics has recently become a significant part of any efficient person authentication solution. The advantage of using biometric traits is that they cannot be stolen, shared or even forgotten. The thesis addresses one of the emerging topics in Authentication System, viz., the implementation of Improved Biometric Authentication System using Multimodal Cue Integration, as the operator assisted identification turns out to be tedious, laborious and time consuming. In order to derive the best performance for the authentication system, an appropriate feature selection criteria has been evolved. It has been seen that the selection of too many features lead to the deterioration in the authentication performance and efficiency. In the work reported in this thesis, various judiciously chosen components of the biometric traits and their feature vectors are used for realizing the newly proposed Biometric Authentication System using Multimodal Cue Integration. The feature vectors so generated from the noisy biometric traits is compared with the feature vectors available in the knowledge base and the most matching pattern is identified for the purpose of user authentication. In an attempt to improve the success rate of the Feature Vector based authentication system, the proposed system has been augmented with the user dependent weighted fusion technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biometrics is one of the biggest tendencies in human identification. The fingerprint is the most widely used biometric. However considering the automatic fingerprint recognition a completely solved problem is a common mistake. The most popular and extensively used methods, the minutiae-based, do not perform well on poor-quality images and when just a small area of overlap between the template and the query images exists. The use of multibiometrics is considered one of the keys to overcome the weakness and improve the accuracy of biometrics systems. This paper presents the fusion of a minutiae-based and a ridge-based fingerprint recognition method at rank, decision and score level. The fusion techniques implemented leaded to a reduction of the Equal Error Rate by 31.78% (from 4.09% to 2.79%) and a decreasing of 6 positions in the rank to reach a Correct Retrieval (from rank 8 to 2) when assessed in the FVC2002-DB1A database. © 2008 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many methods based on biometrics such as fingerprint, face, iris, and retina have been proposed for person identification. However, for deceased individuals, such biometric measurements are not available. In such cases, parts of the human skeleton can be used for identification, such as dental records, thorax, vertebrae, shoulder, and frontal sinus. It has been established in prior investigations that the radiographic pattern of frontal sinus is highly variable and unique for every individual. This has stimulated the proposition of measurements of the frontal sinus pattern, obtained from x-ray films, for skeletal identification. This paper presents a frontal sinus recognition method for human identification based on Image Foresting Transform and shape context. Experimental results (ERR = 5,82%) have shown the effectiveness of the proposed method.