962 resultados para Bioconversion of D-glucose into D-Glucosone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fat, oils, and grease present in complex wastewater can be readily converted to methane, but the energy potential of these compounds is not always recyclable, due to incomplete degradation of long chain fatty acids (LCFA) released during lipids hydrolysis. Oleate (C18:1) is generally the dominant LCFA in lipid-containing wastewater, and its conversion in anaerobic bioreactors results in palmitate (C16:0) accumulation. The reason why oleate is continuously converted to palmitate without further degradation via β-oxidation is still unknown. In this work, the influence of methanogenic activity in the initial conversion steps of unsaturated LCFA was studied in 10 bioreactors continuously operated with saturated or unsaturated C16- and C18-LCFA, in the presence or absence of the methanogenic inhibitor bromoethanesulfonate (BrES). Saturated Cn-2-LCFA accumulated both in the presence and absence of BrES during the degradation of unsaturated Cn-LCFA, and represented more than 50\% of total LCFA. In the presence of BrES further conversion of saturated intermediates did not proceed, not even when prolonged batch incubation was applied. As the initial steps of unsaturated LCFA degradation proceed uncoupled from methanogenesis, accumulation of saturated LCFA can be expected. Analysis of the active microbial communities suggests a role for facultative anaerobic bacteria in the initial steps of unsaturated LCFA biodegradation. Understanding this role is now imperative to optimize methane production from LCFA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A burn patient was infected with Acinetobacter baumannii on transfer to the hospital after a terrorist attack. Two patients experienced cross-infection. Environmental swab samples were negative for A. baumannii. Six months later, the bacteria reemerged in 6 patients. Environmental swab samples obtained at this time were inoculated into a minimal mineral broth, and culture results showed widespread contamination. No case of infection occurred after closure of the unit for disinfection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Report for the scientific sojourn carried out at the Max Planck Institut of Molecular Phisiology, Germany, from 2006 to 2008.The work carried out during this postdoctoral stage was focused on two different projects. Firstly, identification of D-Ala D-Ala Inhibitors and the development of new synthethic approaches to obtain lipidated peptides and proteins and the use of these lipidated proteins in biological and biophysical studies. In the first project, new D-Ala D-Ala inhibitors were identified by using structural alignments of the ATP binding sites of the bacterial ligase DDl and protein and lipid kinases in complex with ATP analogs. We tested a series of commercially available kinase inhibitors and found LFM-A13 and Tyrphostine derivatives to inhibit DDl enzyme activity. Based on the initial screening results we synthesized a series of malononitrilamide and salicylamide derivatives and were able to confirm the validity of these scaffolds as inhibitors of DDl. From this investigation we gained a better understanding of the structural requirements and limitations necessary for the preparation of ATP competitive DDl inhibitors. The compounds in this study may serve as starting points for the development of bi-substrate inhibitors that incorporate both, an ATP competitive and a substrate competitive moiety. Bisubstrate inhibitors that block the ATP and D-Ala binding sites should exhibit enhanced selectivity and potency profiles by preferentially inhibiting DDl over kinases. In the second project, an optimized synthesis for tha alkylation of cysteins using the thiol ene reaction was establisehd. This new protocol allowed us to obtain large amounts of hexadecylated cysteine that was required for the synthesis of differently lipidated peptides. Afterwards the synthesis of various N-ras peptides bearing different lipid anchors was performed and the peptides were ligated to a truncated N-ras protein. The influence of this differently lipidated N-ras proteins on the partioning and association of N-Ras in model membrane subdomains was studied using Atomic Force Microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As computer chips implementation technologies evolve to obtain more performance, those computer chips are using smaller components, with bigger density of transistors and working with lower power voltages. All these factors turn the computer chips less robust and increase the probability of a transient fault. Transient faults may occur once and never more happen the same way in a computer system lifetime. There are distinct consequences when a transient fault occurs: the operating system might abort the execution if the change produced by the fault is detected by bad behavior of the application, but the biggest risk is that the fault produces an undetected data corruption that modifies the application final result without warnings (for example a bit flip in some crucial data). With the objective of researching transient faults in computer system’s processor registers and memory we have developed an extension of HP’s and AMD joint full system simulation environment, named COTSon. This extension allows the injection of faults that change a single bit in processor registers and memory of the simulated computer. The developed fault injection system makes it possible to: evaluate the effects of single bit flip transient faults in an application, analyze an application robustness against single bit flip transient faults and validate fault detection mechanism and strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose is absorbed through the intestine by a transepithelial transport system initiated at the apical membrane by the cotransporter SGLT-1; intracellular glucose is then assumed to diffuse across the basolateral membrane through GLUT2. Here, we evaluated the impact of GLUT2 gene inactivation on this transepithelial transport process. We report that the kinetics of transepithelial glucose transport, as assessed in oral glucose tolerance tests, was identical in the presence or absence of GLUT2; that the transport was transcellular because it could be inhibited by the SGLT-1 inhibitor phlorizin, and that it could not be explained by overexpression of another known glucose transporter. By using an isolated intestine perfusion system, we demonstrated that the rate of transepithelial transport was similar in control and GLUT2(-/-) intestine and that it was increased to the same extent by cAMP in both situations. However, in the absence, but not in the presence, of GLUT2, the transport was inhibited dose-dependently by the glucose-6-phosphate translocase inhibitor S4048. Furthermore, whereas transport of [(14)C]glucose proceeded with the same kinetics in control and GLUT2(-/-) intestine, [(14)C]3-O-methylglucose was transported in intestine of control but not of mutant mice. Together our data demonstrate the existence of a transepithelial glucose transport system in GLUT2(-/-) intestine that requires glucose phosphorylation and transfer of glucose-6-phosphate into the endoplasmic reticulum. Glucose may then be released out of the cells by a membrane traffic-based pathway similar to the one we previously described in GLUT2-null hepatocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although combination chemotherapy has been shown to be more effective than single agents in advanced esophagogastric cancer, the better response rates have not fulfilled their promise as overall survival times from best combination still range between 8 to 11 months. So far, the development of targeted therapies stays somewhat behind their integration into treatment concepts compared to other gastrointestinal diseases. Thus, the review summarizes the recent advances in the development of targeted therapies in advanced esophagogastric cancer. The majority of agents tested were angiogenesis inhibitors or agents targeting the epidermal growth factor receptors EGFR1 and HER2. For trastuzumab and bevacizumab, phase III trial results have been presented recently. While addition of trastuzumab to cisplatin/5-fluoropyrimidine-based chemotherapy results in a clinically relevant and statistically significant survival benefit in HER 2+ patients, the benefit of the addition of bevacizumab to chemotherapy was not significant. Thus, all patients with metastatic disease should be tested for HER-2 status in the tumor. Trastuzumab in combination with cisplatin/5-fluoropyrimidine-based chemotherapy is the new standard of care for patients with HER2-positive advanced gastric cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma concentrations of alpha 1-acid glycoprotein (AAG), albumin, triglycerides, cholesterol, and total proteins, as well as the plasma binding of racemic, d-methadone, and l-methadone were measured in 45 healthy subjects. The AAG phenotypes and the concentrations of AAG variants were also determined. The measured free fractions for racemic, d-methadone, and l-methadone were, respectively, 12.7% +/- 3.3%, 10.0% +/- 2.9%, and 14.2% +/- 3.2% (mean +/- SD). A significant correlation was obtained between the binding ratio (B/F) for dl-methadone and the total AAG concentration (r = 0.724; p less than 0.001). A multiple stepwise regression analysis showed that AAG was the main explanatory variable for the binding of the racemate. When concentrations of AAG variants were considered, a significant correlation was obtained between the binding ratio of dl-methadone and orosomucoid2 A concentration (r = 0.715; p less than 0.001), a weak correlation between dl-methadone and orosomucoid1 S concentration (r = 0.494; p less than 0.001), and no correlation between dl-methadone and orosomucoid1 F1 concentration (r = 0.049; not significant). Similar findings were obtained with the enantiomers. This study shows the importance of considering not only total AAG but also concentrations of AAG variants when measuring the binding of methadone and possibly of other drugs in plasma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Counts performed on dissociated cell cultures of E10 chick embryo dorsal root ganglia (DRG) showed after 4-6 days of culture a pronounced decline of the neuronal population in neuron-enriched cultures and a net gain in the number of ganglion cells in mixed DRG cell cultures (containing both neurons and nonneuronal cells). In the latter case, the increase in the number of neurons was found to depend on NGF and to average 119% in defined medium or 129% in horse serum-supplemented medium after 6 days of culture. The lack of [3H]thymidine incorporation into the neuronal population indicated that the newly formed ganglion cells were not generated by proliferation. On the contrary, the differentiation of postmitotic neuroblasts present in the nonneuronal cell compartment was supported by sequential microphotographs of selected fields taken every hour for 48-55 hr after 3 days of culture. Apparently nonneuronal flat dark cells exhibited morphological changes and gradually evolved into neuronal ovoid and refringent cell bodies with expanding neurites. The ultrastructural organization of these evolving cells corresponded to that of primitive or intermediate neuroblasts. The neuronal nature of these rounding up cell bodies was indeed confirmed by the progressive expression of various neuronal cell markers (150 and 200-kDa neurofilament triplets, neuron specific enolase, and D2/N-CAM). Besides a constant lack of immunoreactivity for tyrosine hydroxylase, somatostatin, parvalbumin, and calbindin-D 28K and a lack of cytoenzymatic activity for carbonic anhydrase, all the newly produced neurons expressed three main phenotypic characteristics: a small cell body, a strong immunoreactivity to MAG, and substance P. Hence, ganglion cells newly differentiated in culture would meet characteristics ascribed to small B sensory neurons and more specifically to a subpopulation of ganglion cells containing substance P-immunoreactive material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve long-term survival, prompt revascularization of the infarct-related artery should be done in patients with acute myocardial infarction (AMI); therefore, a large proportion of these patients would be hospitalized during out of hours. The clinical effects of out-of-hours AMI management were already questioned, with conflicting results. The purpose of this investigation was to compare the in-hospital outcome of patients admitted for AMI during out of hours and working hours. All patients with AMI included in the AMIS Plus Registry from January 1, 1997, to March 30, 2006, were analyzed. The working-hours group included patients admitted from 7 a.m. to 7 p.m. on weekdays, and the out-of-hours group included patients admitted from 7 p.m. to 7 a.m. on weekdays or weekends. Major cardiac events were defined as cardiovascular death, reinfarction, and stroke. The study primary end points were in-hospital death and major adverse cardiac event (MACE) rates. A total of 12,480 patients met the inclusion criteria, with 52% admitted during normal working hours, and 48%, during out of hours. Patients admitted during weekdays included more women (28.1% vs 26%; p = 0.009), older patients (65.5 +/- 13 vs 64.1 +/- 13 years; p = 0.0011), less current smokers (40.1% vs 43.5%; p <0.001), and less patients with a history of ischemic heart disease (31.5% vs 34.5%; p = 0.001). A significantly higher proportion of patients admitted during out of hours had Killip's class III and IV. No differences in terms of in-hospital survival rates between the 2 groups (91.5% vs 91.2%; p = 0.633) or MACE-free survival rates (both 88.5%; p = 1.000) were noted. In conclusion, the outcome of patients with AMI admitted out of hours was the same compared with those with a weekday admission. Of predictors for in-hospital outcome, timing of admission had no significant influence on mortality and/or MACE incidence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Higher plants possess multiple members of the phytochrome family of red, far-red light sensors to modulate plant growth and development according to competition from neighbors. The phytochrome family is composed of the light-labile phyA and several light-stable members (phyB-phyE in Arabidopsis). phyA accumulates to high levels in etiolated seedlings and is essential for young seedling establishment under a dense canopy. In photosynthetically active seedlings high levels of phyA counteract the shade avoidance response. phyA levels are maintained low in light-grown plants by a combination of light-dependent repression of PHYA transcription and light-induced proteasome-mediated degradation of the activated photoreceptor. Light-activated phyA is transported from the cytoplasm where it resides in darkness to the nucleus where it is needed for most phytochrome-induced responses. Here we show that phyA is degraded by a proteasome-dependent mechanism both in the cytoplasm and the nucleus. However, phyA degradation is significantly slower in the cytoplasm than in the nucleus. In the nucleus phyA is degraded in a proteasome-dependent mechanism even in its inactive Pr (red light absorbing) form, preventing the accumulation of high levels of nuclear phyA in darkness. Thus, light-induced degradation of phyA is in part controlled by a light-regulated import into the nucleus where the turnover is faster. Although most phyA responses require nuclear phyA it might be useful to maintain phyA in the cytoplasm in its inactive form to allow accumulation of high levels of the light sensor in etiolated seedlings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we report that, in response to proteasome inhibition, the E3-Ubiquitin ligase TRIM50 localizes to and promotes the recruitment and aggregation of polyubiquitinated proteins to the aggresome. Using Hdac6-deficient mouse embryo fibroblasts (MEF) we show that this localization is mediated by the histone deacetylase 6, HDAC6. Whereas Trim50-deficient MEFs allow pinpointing that the TRIM50 ubiquitin-ligase regulates the clearance of polyubiquitinated proteins localized to the aggresome. Finally we demonstrate that TRIM50 colocalizes, interacts with and increases the level of p62, a multifunctional adaptor protein implicated in various cellular processes including the autophagy clearance of polyubiquitinated protein aggregates. We speculate that when the proteasome activity is impaired, TRIM50 fails to drive its substrates to the proteasome-mediated degradation, and promotes their storage in the aggresome for successive clearance.