947 resultados para Bio-mimicking


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel place recognition algorithm inspired by the recent discovery of overlapping and multi-scale spatial maps in the rodent brain. We mimic this hierarchical framework by training arrays of Support Vector Machines to recognize places at multiple spatial scales. Place match hypotheses are then cross-validated across all spatial scales, a process which combines the spatial specificity of the finest spatial map with the consensus provided by broader mapping scales. Experiments on three real-world datasets including a large robotics benchmark demonstrate that mapping over multiple scales uniformly improves place recognition performance over a single scale approach without sacrificing localization accuracy. We present analysis that illustrates how matching over multiple scales leads to better place recognition performance and discuss several promising areas for future investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid reforming of natural honey exposed to reactive low-temperature Ar + H2 plasmas produced high-quality, ultra-thin vertical graphenes, without any metal catalyst or external heating. This transformation is only possible in the plasma and fails in similar thermal processes. The process is energy-efficient, environmentally benign, and is much cheaper than common synthesis methods based on purified hydrocarbon precursors. The graphenes retain the essential minerals of natural honey, feature reactive open edges and reliable gas- and bio-sensing performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasma-assisted RF sputtering deposition of a biocompatible, functionally graded calcium phosphate bioceramic on a Ti6A14 V orthopedic alloy is reported. The chemical composition and presence of hydroxyapatite (HA), CaTiO3, and CaO mineral phases can be effectively controlled by the process parameters. At higher DC biases, the ratio [Ca]/[P] and the amount of CaO increase, whereas the HA content decreases. Optical emission spectroscopy suggests that CaO+ is the dominant species that responds to negative DC bias and controls calcium content. Biocompatibility tests in simulated body fluid confirm a positive biomimetic response evidenced by in-growth of an apatite layer after 24 h of immersion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical emission of reactive plasma species during the synthesis of functionally graded calcium phosphate-based bioactive films has been investigated. The coatings have been deposited on Ti-6Al-4V orthopedic alloy by co-sputtering of hydroxyapatite (HA) and titanium targets in reactive plasmas of Ar + H2O gas mixtures. The species, responsible for the Ca-P-Ti film growth have been non-intrusively monitored in situ by a high-resolution optical emission spectroscopy (OES). It is revealed that the optical emission originating from CaO species dominates throughout the deposition process. The intensities of CaO, PO and CaPO species are strongly affected by variations of the operating pressure, applied RF power, and DC substrate bias. The optical emission intensity (OEI) of reaction species can efficiently be controlled by addition of H2O reactant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increased interest on the use of UAVs for environmental research and to track bush fire plumes, volcanic plumes or pollutant sources. The aim of this paper is to describe the theory and results of a bio-inspired plume tracking algorithm. A memory based and gradient based approach, were developed and compared. A method for generating sparse plumes was also developed. Results indicate the ability of the algorithms to track plumes in 2D and 3D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to protect our planet and ourselves from the adverse effects of excessive CO2 emissions and to prevent an imminent non-renewable fossil fuel shortage and energy crisis, there is a need to transform our current ‘fossil fuel dependent’ energy systems to new, clean, renewable energy sources. The world has recognized hydrogen as an energy carrier that complies with all the environmental quality and energy security, demands. This research aimed at producing hydrogen through anaerobic fermentation, using food waste as the substrate. Four food waste substrates were used: Rice, fish, vegetable and their mixture. Bio-hydrogen production was performed in lab scale reactors, using 250 mL serum bottles. The food waste was first mixed with the anaerobic sewage sludge and incubated at 37°C for 31 days (acclimatization). The anaerobic sewage sludge was then heat treated at 80°C for 15 min. The experiment was conducted at an initial pH of 5.5 and temperatures of 27, 35 and 55°C. The maximum cumulative hydrogen produced by rice, fish, vegetable and mixed food waste substrates were highest at 37°C (Rice =26.97±0.76 mL, fish = 89.70±1.25 mL, vegetable = 42.00±1.76 mL, mixed = 108.90±1.42 mL). A comparative study of acclimatized (the different food waste substrates were mixed with anaerobic sewage sludge and incubated at 37°C for 31days) and non-acclimatized food waste substrate (food waste that was not incubated with anaerobic sewage sludge) showed that acclimatized food waste substrate enhanced bio-hydrogen production by 90 - 100%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integration of biometrics is considered as an attractive solution for the issues associated with password based human authentication as well as for secure storage and release of cryptographic keys which is one of the critical issues associated with modern cryptography. However, the widespread popularity of bio-cryptographic solutions are somewhat restricted by the fuzziness associated with biometric measurements. Therefore, error control mechanisms must be adopted to make sure that fuzziness of biometric inputs can be sufficiently countered. In this paper, we have outlined such existing techniques used in bio-cryptography while explaining how they are deployed in different types of solutions. Finally, we have elaborated on the important facts to be considered when choosing appropriate error correction mechanisms for a particular biometric based solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several algorithms and techniques widely used in Computer Science have been adapted from, or inspired by, known biological phenomena. This is a consequence of the multidisciplinary background of most early computer scientists. The field has now matured, and permits development of tools and collaborative frameworks which play a vital role in advancing current biomedical research. In this paper, we briefly present examples of the former, and elaborate upon two of the latter, applied to immunological modelling and as a new paradigm in gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D) substrates cannot accurately mimic the complex matrix of native TME, whereas 3D models can recapitulate the natural tumour progression in vitro. As part of the tumour stroma, fibroblasts and endothelial cells (ECs) are well-known to not only support tumour growth but also to reduce the efficacy of anti-cancer drugs. Particularly, ECs are involved in the process of tumour vascularisation which represents a crucial step in the progression of cancer. Most of the previous studies are carried out in animal models or 2D cultures; hence, a detailed evaluation of experimental data is poor. To address this issue, we aim to develop a novel 3D in vitro approach, to mimic native tumour angiogenesis in 3D and to quantify the developed vascular network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrothermal liquefaction (HTL) presents a viable route for converting a vast range of materials into liquid fuel, without the need for pre-drying. Currently, HTL studies produce bio-crude with properties that fall short of diesel or biodiesel standards. Upgrading bio-crude improves the physical and chemical properties to produce a fuel corresponding to diesel or biodiesel. Properties such as viscosity, density, heating value, oxygen, nitrogen and sulphur content, and chemical composition can be modified towards meeting fuel standards using strategies such as solvent extraction, distillation, hydrodeoxygenation and catalytic cracking. This article presents a review of the upgrading technologies available, and how they might be used to make HTL bio-crude into a transportation fuel that meets current fuel property standards.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone metastasis is a complication that occurs in 80 % of women with advanced breast cancer. Despite the prevalence of bone metastatic disease, the avenues for its clinical management are still restricted to palliative treatment options. In fact, the underlying mechanisms of breast cancer osteotropism have not yet been fully elucidated due to a lack of suitable in vivo models that are able to recapitulate the human disease. In this work, we review the current transplantation-based models to investigate breast cancer-induced bone metastasis and delineate the strengths and limitations of the use of different grafting techniques, tissue sources, and hosts. We further show that humanized xenograft models incorporating human cells or tissue grafts at the primary tumor site or the metastatic site mimic more closely the human disease. Tissue-engineered constructs are emerging as a reproducible alternative to recapitulate functional humanized tissues in these murine models. The development of advanced humanized animal models may provide better platforms to investigate the mutual interactions between human cancer cells and their microenvironment and ultimately improve the translation of preclinical drug trials to the clinic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a system to analyze long field recordings with low signal-to-noise ratio (SNR) for bio-acoustic monitoring. A method based on spectral peak track, Shannon entropy, harmonic structure and oscillation structure is proposed to automatically detect anuran (frog) calling activity. Gaussian mixture model (GMM) is introduced for modelling those features. Four anuran species widespread in Queensland, Australia, are selected to evaluate the proposed system. A visualization method based on extracted indices is employed for detection of anuran calling activity which achieves high accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron nitride nanomaterials have attracted significant interest due to their superior chemical and physical properties. Despite these novel properties, investigation on the interaction between boron nitride nanoparticle (BN NP) and living systems has been limited. In this study, BN NP (100–250 nm) is assessed as a promising biomaterial for medical applications. The toxicity of BN NP is evaluated by assessing the cells behaviours both biologically (MTT assay, ROS detection etc.) and physically (atomic force microscopy). The uptake mechanism of BN NP is studied by analysing the alternations in cellular morphology based on cell imaging techniques. The results demonstrate in vitro cytocompatibility of BN NP with immense potential for use as an effective nanoparticle for various bio-medical applications.