956 resultados para Bifurcação em sistemas dinâmicos
Resumo:
El propósito de esta tesis fue estudiar el rendimiento ofensivo de los equipos de balonmano de élite cuando se considera el balonmano como un sistema dinámico complejo no lineal. La perspectiva de análisis dinámica dependiente del tiempo fue adoptada para evaluar el rendimiento de los equipos durante el partido. La muestra general comprendió los 240 partidos jugados en la temporada 2011-2012 de la liga profesional masculina de balonmano de España (Liga ASOBAL). En el análisis posterior solo se consideraron los partidos ajustados (diferencia final de goles ≤ 5; n = 142). El estado del marcador, la localización del partido, el nivel de los oponentes y el periodo de juego fueron incorporados al análisis como variables situacionales. Tres estudios compusieron el núcleo de la tesis. En el primer estudio, analizamos la coordinación entre las series temporales que representan el proceso goleador a lo largo del partido de cada uno de los dos equipos que se enfrentan. Autocorrelaciones, correlaciones cruzadas, doble media móvil y transformada de Hilbert fueron usadas para el análisis. El proceso goleador de los equipos presentó una alta consistencia a lo largo de todos los partidos, así como fuertes modos de coordinación en fase en todos los contextos de juego. Las únicas diferencias se encontraron en relación al periodo de juego. La coordinación en los procesos goleadores de los equipos fue significativamente menor en el 1er y 2º periodo (0–10 min y 10–20 min), mostrando una clara coordinación creciente a medida que el partido avanzaba. Esto sugiere que son los 20 primeros minutos aquellos que rompen los partidos. En el segundo estudio, analizamos los efectos temporales (efecto inmediato, a corto y a medio plazo) de los tiempos muertos en el rendimiento goleador de los equipos. Modelos de regresión lineal múltiple fueron empleados para el análisis. Los resultados mostraron incrementos de 0.59, 1.40 y 1.85 goles para los periodos que comprenden la primera, tercera y quinta posesión de los equipos que pidieron el tiempo muerto. Inversamente, se encontraron efectos significativamente negativos para los equipos rivales, con decrementos de 0.50, 1.43 y 2.05 goles en los mismos periodos respectivamente. La influencia de las variables situacionales solo se registró en ciertos periodos de juego. Finalmente, en el tercer estudio, analizamos los efectos temporales de las exclusiones de los jugadores sobre el rendimiento goleador de los equipos, tanto para los equipos que sufren la exclusión (inferioridad numérica) como para los rivales (superioridad numérica). Se emplearon modelos de regresión lineal múltiple para el análisis. Los resultados mostraron efectos negativos significativos en el número de goles marcados por los equipos con un jugador menos, con decrementos de 0.25, 0.40, 0.61, 0.62 y 0.57 goles para los periodos que comprenden el primer, segundo, tercer, cuarto y quinto minutos previos y posteriores a la exclusión. Para los rivales, los resultados mostraron efectos positivos significativos, con incrementos de la misma magnitud en los mismos periodos. Esta tendencia no se vio afectada por el estado del marcador, localización del partido, nivel de los oponentes o periodo de juego. Los incrementos goleadores fueron menores de lo que se podría esperar de una superioridad numérica de 2 minutos. Diferentes teorías psicológicas como la paralización ante situaciones de presión donde se espera un gran rendimiento pueden ayudar a explicar este hecho. Los últimos capítulos de la tesis enumeran las conclusiones principales y presentan diferentes aplicaciones prácticas que surgen de los tres estudios. Por último, se presentan las limitaciones y futuras líneas de investigación. ABSTRACT The purpose of this thesis was to investigate the offensive performance of elite handball teams when considering handball as a complex non-linear dynamical system. The time-dependent dynamic approach was adopted to assess teams’ performance during the game. The overall sample comprised the 240 games played in the season 2011-2012 of men’s Spanish Professional Handball League (ASOBAL League). In the subsequent analyses, only close games (final goal-difference ≤ 5; n = 142) were considered. Match status, game location, quality of opposition, and game period situational variables were incorporated into the analysis. Three studies composed the core of the thesis. In the first study, we analyzed the game-scoring coordination between the time series representing the scoring processes of the two opposing teams throughout the game. Autocorrelation, cross-correlation, double moving average, and Hilbert transform were used for analysis. The scoring processes of the teams presented a high consistency across all the games as well as strong in-phase modes of coordination in all the game contexts. The only differences were found when controlling for the game period. The coordination in the scoring processes of the teams was significantly lower for the 1st and 2nd period (0–10 min and 10–20 min), showing a clear increasing coordination behavior as the game progressed. This suggests that the first 20 minutes are those that break the game-scoring. In the second study, we analyzed the temporal effects (immediate effect, short-term effect, and medium-term effect) of team timeouts on teams’ scoring performance. Multiple linear regression models were used for the analysis. The results showed increments of 0.59, 1.40 and 1.85 goals for the periods within the first, third and fifth timeout ball possessions for the teams that requested the timeout. Conversely, significant negative effects on goals scored were found for the opponent teams, with decrements of 0.59, 1.43 and 2.04 goals for the same periods, respectively. The influence of situational variables on the scoring performance was only registered in certain game periods. Finally, in the third study, we analyzed the players’ exclusions temporal effects on teams’ scoring performance, for the teams that suffer the exclusion (numerical inferiority) and for the opponents (numerical superiority). Multiple linear regression models were used for the analysis. The results showed significant negative effects on the number of goals scored for the teams with one less player, with decrements of 0.25, 0.40, 0.61, 0.62, and 0.57 goals for the periods within the previous and post one, two, three, four and five minutes of play. For the opponent teams, the results showed positive effects, with increments of the same magnitude in the same game periods. This trend was not affected by match status, game location, quality of opposition, or game period. The scoring increments were smaller than might be expected from a 2-minute numerical playing superiority. Psychological theories such as choking under pressure situations where good performance is expected could contribute to explain this finding. The final chapters of the thesis enumerate the main conclusions and underline the main practical applications that arise from the three studies. Lastly, limitations and future research directions are described.
Resumo:
A pesquisa apresenta uma adaptação do modelo matemático de lógica nebulosa. A adaptação é uma alternativa capaz de representar o comportamento de uma variável subjetiva ao longo de um intervalo de tempo, assim como tratar variáveis estáticas (como o modelo computacional existente). Pesquisas realizadas apontam para uma lacuna no tratamento de variáveis dinâmicas (dependência no tempo) e a proposta permite que o contexto em que as variáveis estão inseridas tenha um papel no entendimento e tomada de decisão de problemas com estas características. Modelos computacionais existentes tratam a questão temporal como sequenciador de eventos ou custo, sem considerar a influência de fenômenos passados na condição corrente, ao contrário do modelo proposto que permite uma contribuição dos acontecimentos anteriores no entendimento e tratamento do estado atual. Apenas para citar alguns exemplos, o uso da solução proposta pode ser aplicado na determinação de nível de conforto em transporte público ou auxiliar na aferição de grau de risco de investimentos no mercado de ações. Em ambos os casos, comparações realizadas entre o modelo de lógica nebulosa existente e a adaptação sugerida apontam uma diferença no resultado final que pode ser entendida como uma maior qualidade na informação de suporte à tomada de decisão.
Resumo:
En las últimas décadas diversas técnicas basadas en teledetección mediante sistemas de microondas han servido para aumentar el conocimiento de la superficie terrestre. En concreto, los sistemas basados en Radar de Apertura Sintética (SAR) han demostrado ser una herramienta con un gran potencial en la monitorización de cultivos y de gran ayuda a las técnicas de cultivo de precisión (Precision Farming). En la actualidad existen técnicas de clasificación de cultivos basadas en adquisiciones SAR que permiten con elevada precisión determinar la cobertura espacial de diferentes cultivos sin embargo la estimación de parámetros biofísicos resulta más compleja con estas técnicas. Recientemente diversas estrategias han sido propuestas con el objetivo de determinar el estado de un cultivo, el estado fenológico, en un determinado instante basándose en el análisis de las características de las imágenes SAR polarimétricas (PolSAR). Estas primeras aproximaciones todavía se encuentran en una etapa de desarrollo temprana y por tanto es posible profundizar y analizar las diferentes alternativas a partir de ellas de manera que podamos obtener resultados más precisos y que puedan aportar información de valor añadido a las técnicas de cultivo de precisión. En este trabajo abordaremos la alternativa de aprovechar las series de imágenes SAR obtenidas en diferentes instantes en el ciclo de un cultivo para determinar el estado fenológico de un cultivo.
Resumo:
The great interest in nonlinear system identification is mainly due to the fact that a large amount of real systems are complex and need to have their nonlinearities considered so that their models can be successfully used in applications of control, prediction, inference, among others. This work evaluates the application of Fuzzy Wavelet Neural Networks (FWNN) to identify nonlinear dynamical systems subjected to noise and outliers. Generally, these elements cause negative effects on the identification procedure, resulting in erroneous interpretations regarding the dynamical behavior of the system. The FWNN combines in a single structure the ability to deal with uncertainties of fuzzy logic, the multiresolution characteristics of wavelet theory and learning and generalization abilities of the artificial neural networks. Usually, the learning procedure of these neural networks is realized by a gradient based method, which uses the mean squared error as its cost function. This work proposes the replacement of this traditional function by an Information Theoretic Learning similarity measure, called correntropy. With the use of this similarity measure, higher order statistics can be considered during the FWNN training process. For this reason, this measure is more suitable for non-Gaussian error distributions and makes the training less sensitive to the presence of outliers. In order to evaluate this replacement, FWNN models are obtained in two identification case studies: a real nonlinear system, consisting of a multisection tank, and a simulated system based on a model of the human knee joint. The results demonstrate that the application of correntropy as the error backpropagation algorithm cost function makes the identification procedure using FWNN models more robust to outliers. However, this is only achieved if the gaussian kernel width of correntropy is properly adjusted.
Resumo:
El estudio de los sistemas dinámicos es un campo importante de la investigación matemática actual. Estos pueden ser clasificados como sistemas dinámicos clásicos y sistemas dinámicos 100% discretos. A su vez los sistemas dinámicos clásicos se pueden dividir en sistemas dinámicos discretos y sistemas dinámicos continuos. El estudio de los sistemas dinámicos clásicos involucra herramientas de cálculo y geometría diferencial. En cambio los sistemas dinámicos 100% discretos se requiere utilizar herramientas de teoría de números, álgebra, combinatoria y teoría de grafos. Históricamente, los sistemas dinámicos llamados finitos sistemas dinámicos discretos no han recibido en modo alguna atención como la han tenido los sistemas continuos. Hay por supuesto muchas razones para esto, una de las cuales es el uso exitoso de las Ecuaciones Diferenciales Ordinarias (EDO’s) y Ecuaciones Diferenciales Parciales (EDP’s) como herramientas analíticas y descriptivas en las ciencias y sus aplicaciones.
Resumo:
Las matemáticas, como muchas otras áreas del pensamiento, han sufrido en el tercio central del siglo XX el impacto de la corriente filosófica estructuralista. Esta tendía a desplazar el centro de atención hacia los problemas de fundamentación por una parte, y por otra subrayaba la importancia de las estructuras abstractas como la de conjunto, grupo u otras, que se presentan en diversas áreas de las matemáticas. En general la corriente estructuralista impregna a las matemáticas de los métodos del álgebra y es compañera inevitable de una tendencia hacia la abstracción. El estructuralismo ha estado lejos de ser un factor determinante en el desarrollo de la producción matemática en el último siglo, ya que el volumen ingente de investigación volcada hacia las aplicaciones ha pesado de forma decisiva en el resultado global. Sin embargo, es en el ámbito de la enseñanza de las matemáticas donde la influencia del estructuralismo ha sido más profunda, penetrando en los programas a todos los niveles educativos y provocando que al estudiar matemáticas, los estudiantes se queden con la impresión de que no hay nada nuevo en matemáticas desde Euclides o Pitágoras, es decir, desde hace más de 2000 años. Con un poco de suerte, algunos se cree que las matemáticas dejaron de desarrollarse después de la creación del cálculo diferencial e integral (hace unos 300 años), en cambio no tenemos la misma impresión sobre otras ciencias como física, química o biología. La geometría fractal, cuyos primeros desarrollos datan de finales del siglo XIX, ha recibido durante los últimos treinta años, desde la publicación de los trabajos de Mandelbrot, una atención y un auge crecientes. Lejos de ser simplemente una herramienta de generación de impresionantes paisajes virtuales, la geometría fractal viene avalada por la teoría geométrica de la medida y por innumerables aplicaciones en ciencias tan dispares como la Física, la Química, la Economía o, incluso, la Informática.
Resumo:
Esta tesis vincula el estudio de los sistemas dinámicos caóticos con la teoría del control para explorar la relación que existe entre los métodos de control del caos y las reglas de política monetaria. En ambos casos está presente un objetivo estabilizador; de una parte, los métodos de control del caos buscan corregir movimientos irregulares estabilizando alguna de las orbitas periódicas inestables que se encuentran en un atractor extraño, esto es, llevar al sistema de un comportamiento caótico a un comportamiento regular; mientras que en economía, los policy maker fijan una meta para las variables objetivo de política y buscan que el valor fijado coincida con el valor observado. La forma con la cual se estabiliza es a través del empleo de reglas de control realimentado que operan reduciendo la diferencia entre el valor observado para la variable y su valor fijado, empleando para ello un instrumento de control. Así, las reglas de control de sistemas dinámicos caóticos y las reglas de política tienen como objetivo que el sistema en el cual sean aplicadas tenga un comportamiento deseado. Buscamos aplicar en esta tesis las técnicas de control de los sistemas dinámicos caóticos, en particular, el método OGY de control del caos, al diseño de reglas de política monetaria para comprobar su potencial estabilizador en las variables económicas. Pretendemos mostrar que el caos se puede controlar y que los métodos desarrollados para su control pueden servir de herramientas prácticas para la elaboración de políticas de estabilización. El método que empleamos aquí se puede aplicar en cualquier sistema dinámico que presente comportamiento caótico...
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
[ES] En este trabajo se expone una metodología para modelar un sistema Multi-Agente (SMA), para que sea equivalente a un sistema de Ecuaciones Diferenciales Ordinarias (EDO), mediante un esquema basado en el método de Monte Carlo. Se muestra que el SMA puede describir con mayor riqueza modelos de sistemas dinámicos con variables cuantificadas discretas. Estos sistemas son muy acordes con los sistemas biológicos y fisiológicos, como el modelado de poblaciones o el modelado de enfermedades epidemiológicas, que en su mayoría se modelan con ecuaciones diferenciales. Los autores piensan que las ecuaciones diferenciales no son lo suficientemente apropiadas para modelar este tipo de problemas y proponen que se modelen con una técnica basada en agentes. Se plantea un caso basado en un modelo matemático de Leucemia Mieloide Crónica (LMC) que se transforma en un SMA equivalente. Se realiza una simulación de los dos modelos (SMA y EDO) y se compara los resultados obtenidos.
Resumo:
A resposta impulso é utilizada como ferramenta padrão no estudo direto de sistemas concentrados, discretos e distribuídos de ordem arbitrária. Esta abordagem leva ao desenvolvimento de uma plataforma unificada para a obtenção de respostas dinâmicas. Em particular, as respostas forçadas dos sistemas são decompostas na soma de uma resposta permanente e de uma resposta livre induzida pelos valores iniciais da resposta permanente. A teoria desenvolve-se de maneira geral e direta para sistemas de n-ésima ordem, introduzindo-se a base dinâmica gerada pela resposta impulso na forma padrão e normalizada, sem utilizar-se a formulação de estado, através da qual reduz-se um sistema de ordem superior para um sistema de primeira ordem. Considerou-se sistemas de primeira ordem a fim de acompanhar-se os muitos resultados apresentados na literatura através da formulação de espaço de estado. Os métodos para o cálculo da resposta impulso foram classificados em espectrais, não espectrais e numéricos. A ênfase é dada aos métodos não espectrais, pois a resposta impulso admite uma fórmula fechada que requer o uso de três equações características do tipo algébrica, diferencial e em diferenças Realizou-se simulações numéricas onde foram apresentados modelos vibratórios clássicos e não clássicos. Os sistemas considerados foram sistemas do tipo concentrado, discreto e distribuído. Os resultados da decomposição da resposta dinâmica de sistemas concentrados diante de cargas harmônicas e não harmônicas foram apresentados em detalhe. A decomposição para o caso discreto foi desenvolvida utilizando-se os esquemas de integração numérica de Adams-Basforth, Strömer e Numerov. Para sistemas distribuídos, foi considerado o modelo de Euler-Bernoulli com força axial, sujeito a entradas oscilatórias com amplitude triangular, pulso e harmônica. As soluções permanentes foram calculadas com o uso da função de Green espacial. A resposta impulso foi aproximada com o uso do método espectral.
Resumo:
Este estudo visou a utilização direta da análise modal adjunta em sistemas não-clásicos de natureza concentrada e distribuída, explorando o conceitos de biortogonalidade modal e da resposta impulso evolutiva e estacionária. Discutiu-se a natureza do espectro para diversas classes de sistemas, em particular para sistemas com efeitos giroscópicos e com atrito interno. A teoria foi desenvolvida de maneira paralela para sistemas de primeira ordem e de segunda ordem, porém é apresentada de maneira independente, ou seja, para os sistemas de segunda ordem não é utilizada a formulação de espaço de estado, a qual reduz o sistema para primeira ordem. Assim, as relações de biortogonalidade para sistemas de segunda ordem são apresentadas e utilizadas de maneira direta na expansão modal da resposta dos sistemas. A forma dos modos de vibração em variadas aplicações é determinada de maneira exata com o uso da base dinâmica gerada pela resposta impulso espacial. No cálculo dos autovalores foi introduzida uma aproximação polinomial para a resposta impulso espacial Os coeficientes dessa aproximação foram obtidos por recursão, a partir de uma equação em diferenças associada à equação característica do problema modal. Simulações numéricas foram realizadas para obter a resposta impulso evolutiva, respostas forçadas e modos de vibração de sistemas não-clássicos concentrados, formulados através de modelos ou aproximações, e sistemas distribuídos, formulados através de modelos ou incluindo distúrbios e acoplamento através das condições decontorno. Os resultados deste estudo permitiram concluir, através das simulações numéricas realizadas, a importância da base dinâmica no sentido de simplificar os cálculos para obtenção dos autovalores, dos modos de vibração e, consequentemente, da resposta do sistema, seja concentrado, distribuído com ou sem acoplamento das condições de contorno. A utilização da análise modal adjunta, desde que ocorra uma ordenação adequada dos autovalores e modos, mostrou-se um método eficiente na obtenção direta da resposta de sistemas não-clássicos de segunda ordem, ou seja, sem redução ao espaço de estado.