149 resultados para Beamforming
Resumo:
This paper examines the impact of two simple precoding schemes on the capacity of 3 × 3 MIMO-enabled radio-over-fiber (RoF) distributed antenna systems (DAS) with excess transmit antennas. Specifically, phase-shift-only transmit beamforming and antenna selection are compared. It is found that for two typical indoor propagation scenarios, both strategies offer double the capacity gain that non-precoding MIMO DAS offers over traditional MIMO collocated antenna systems (CAS), with capacity improvements of 3.2-4.2 bit/s/Hz. Further, antenna selection shows similar performance to phase-only beamforming, differing by <0.5% and offering median capacities of 94 bit/s/Hz and 82 bit/s/Hz in the two propagation scenarios respectively. Because optical DASs enable precise, centralized control of remote antennas, they are well suited for implementing these beamforming schemes. Antenna selection, in particular, is a simple and effective means of increasing MIMO DAS capacity. © 2013 IEEE.
Resumo:
A generic architecture for implementing a QR array processor in silicon is presented. This improves on previous research by considerably simplifying the derivation of timing schedules for a QR system implemented as a folded linear array, where account has to be taken of processor cell latency and timing at the detailed circuit level. The architecture and scheduling derived have been used to create a generator for the rapid design of System-on-a-Chip (SoC) cores for QR decomposition. This is demonstrated through the design of a single-chip architecture for implementing an adaptive beamformer for radar applications. Published as IEEE Trans Circuits and Systems Part II, Analog and Digital Signal Processing, April 2003 NOT Express Briefs. Parts 1 and II of Journal reorganised since then into Regular Papers and Express briefs
Resumo:
This paper proposes a hybrid transmission technique based on adaptive code-to-user allocation and linear precoding for the downlink of phase shift keying (PSK) based multi-carrier code division multiple access (MC-CDMA) systems. The proposed scheme is based on the separation of the instantaneous multiple access interference (MAI) into constructive and destructive components taking into account the dependency on both the channel variation and the instantaneous symbol values of the active users. The first stage of the proposed technique is to adaptively distribute the available spreading sequences to the users on a symbol-by-symbol basis in the form of codehopping with the objective to steer the users' instantaneous crosscorrelations to yield a favourable constructive to destructive MAI ratio. The second stage is to employ a partial transmitter based zero forcing (ZF) scheme specifically designed for the exploitation of constructive MAI. The partial ZF processing decorrelates destructive interferers, while users that interfere constructively remain correlated. This results in a signal to interference-plus-noise ratio (SINR) enhancement without the need for additional power-per-user investment. It will be shown in the results section that significant bit error rate (BER) performance benefits can be achieved with this technique.
Resumo:
Multiple-input-multiple-output (MIMO) radar schemes whereby the transmit array is partitioned into subarrays have recently been proposed in the literature to combine advantages of phased array and MIMO radar technology. In this work, we utilize this architecture to significantly simplify a transmit procedure in which the covariance matrix across the MIMO radar array is optimized to improve the Cramer-Rao bound (CRB) on target parameter estimation. The MIMO effective array for regular subarrayed transmit apertures is studied, and necessary conditions to obtain a filled effective aperture are presented, which is important for maintaining nonambiguous, low sidelobe beampatterns. The performance of the subarrayed transmit approach is evaluated in terms of the CRB on target parameter estimation, and the optimisation of the beamformer applied to the subarrays to minimize the CRB is considered. The subarrayed transmit scheme is found to have a CRB which is suboptimal to the full diversity transmission, as expected, but is solvable in a small fraction of the time using an iterative beamspace algorithm developed here.
Resumo:
The use of radars in detecting low flying, small targets is being explored for several decades now. However radar with counter-stealth abilities namely the passive, multistatic, low frequency radars are in the focus recently. Passive radar that uses Digital Video Broadcast Terrestrial (DVB-T) signals as illuminator of opportunity is a major contender in this area. A DVB-T based passive radar requires the development of an antenna array that performs satisfactorily over the entire DVB-T band. At Fraunhofer FHR, there is currently a need for an array antenna to be designed for operation over the 450-900 MHz range with wideband beamforming and null steering capabilities. This would add to the ability of the passive radar in detecting covert targets and would improve the performance of the system. The array should require no mechanical adjustments to inter-element spacing to correspond to the DVB-T carrier frequency used for any particular measurement. Such an array would have an increased flexibility of operation in different environment or locations.
The design of such an array antenna and the applied techniques for wideband beamforming and null steering are presented in the thesis. The interaction between the inter-element spacing, the grating lobes and the mutual couplings had to be carefully studied and an optimal solution was to be reached at that meets all the specifications of the antenna array for wideband applications. Directional beams, nulls along interference directions, low sidelobe levels, polarization aspects and operation along a wide bandwidth of 450-900 MHz were some of the key considerations.
Resumo:
We compare the achievable performance of adaptive beamforming (A-BF) and adaptive orthogonal space time block coding (A-OSTBC) with outdated channel feedback. We extend our single user setup to multiuser diversity systems employing adaptive modulation, and illustrate the impact of feedback delay on the multiuser diversity gain with either A-OSTBC or A-BF. Using closed-form expressions for spectral efficiency and average BER of a multiuser diversity system derived in this paper, we prove that the A-BF scheme outperforms the A-OSTBC scheme with no feedback delay. However, when the feedback delay is large, the A-OSTBC scheme achieves better performance due to the reduced diversity advantage of A-BF. We observe that more transmit antennas bring higher spectral efficiency for BF. With small feedback delay, this becomes inverted using OSTBC, due to the effect of channel-hardening. Interestingly, however, we show that A-OSTBC with multiple users enjoys improved spectral efficiency when the number of transmit antennas is increased and the feedback delay is significant
Resumo:
In this paper, we examine a novel approach to network security against passive eavesdroppers in a ray-tracing model and implement it on a hardware platform. By configuring antenna array beam patterns to transmit the data to specific regions, it is possible to create defined regions of coverage for targeted users. By adapting the antenna configuration according to the intended user’s channel state information, this allows the vulnerability of the physical regions to eavesdropping to be reduced. We present the application of our concept to 802.11n networks where an antenna array is employed at the access point. A range of antenna array configurations are examined by simulation and then realized using the Wireless Open-Access Research Platform(WARP)
Resumo:
We present a novel approach to network security against passive eavesdroppers by employing a configurable beam-forming technique to create tightly defined regions of coverage for targeted users. In contrast to conventional encryption methods, our security scheme is developed at the physical layer by configuring antenna array beam patterns to transmit the data to specific regions. It is shown that this technique can effectively reduce vulnerability of the physical regions to eavesdropping by adapting the antenna configuration according to the intended user's channel state information. In this paper we present the application of our concept to 802.11n networks where an antenna array is employed at the access point, and consider the issue of minimizing the coverage area of the region surrounding the targeted user. A metric termed the exposure region is formally defined and used to evaluate the level of security offered by this technique. A range of antenna array configurations are examined through analysis and simulation, and these are subsequently used to obtain the optimum array configuration for a user traversing a coverage area.