965 resultados para Bayesian estimation
Resumo:
Threshold Error Correction Models are used to analyse the term structure of interest Rates. The paper develops and uses a generalisation of existing models that encompasses both the Band and Equilibrium threshold models of [Balke and Fomby ((1997) Threshold cointegration. Int Econ Rev 38(3):627–645)] and estimates this model using a Bayesian approach. Evidence is found for threshold effects in pairs of longer rates but not in pairs of short rates. The Band threshold model is supported in preference to the Equilibrium model.
Resumo:
We introduce a modified conditional logit model that takes account of uncertainty associated with mis-reporting in revealed preference experiments estimating willingness-to-pay (WTP). Like Hausman et al. [Journal of Econometrics (1988) Vol. 87, pp. 239-269], our model captures the extent and direction of uncertainty by respondents. Using a Bayesian methodology, we apply our model to a choice modelling (CM) data set examining UK consumer preferences for non-pesticide food. We compare the results of our model with the Hausman model. WTP estimates are produced for different groups of consumers and we find that modified estimates of WTP, that take account of mis-reporting, are substantially revised downwards. We find a significant proportion of respondents mis-reporting in favour of the non-pesticide option. Finally, with this data set, Bayes factors suggest that our model is preferred to the Hausman model.
Resumo:
In this paper, the mixed logit (ML) using Bayesian methods was employed to examine willingness-to-pay (WTP) to consume bread produced with reduced levels of pesticides so as to ameliorate environmental quality, from data generated by a choice experiment. Model comparison used the marginal likelihood, which is preferable for Bayesian model comparison and testing. Models containing constant and random parameters for a number of distributions were considered, along with models in ‘preference space’ and ‘WTP space’ as well as those allowing for misreporting. We found: strong support for the ML estimated in WTP space; little support for fixing the price coefficient a common practice advocated and adopted in the environmental economics literature; and, weak evidence for misreporting.
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.
Resumo:
Approximate Bayesian computation (ABC) is a highly flexible technique that allows the estimation of parameters under demographic models that are too complex to be handled by full-likelihood methods. We assess the utility of this method to estimate the parameters of range expansion in a two-dimensional stepping-stone model, using samples from either a single deme or multiple demes. A minor modification to the ABC procedure is introduced, which leads to an improvement in the accuracy of estimation. The method is then used to estimate the expansion time and migration rates for five natural common vole populations in Switzerland typed for a sex-linked marker and a nuclear marker. Estimates based on both markers suggest that expansion occurred < 10,000 years ago, after the most recent glaciation, and that migration rates are strongly male biased.
Resumo:
Biologists frequently attempt to infer the character states at ancestral nodes of a phylogeny from the distribution of traits observed in contemporary organisms. Because phylogenies are normally inferences from data, it is desirable to account for the uncertainty in estimates of the tree and its branch lengths when making inferences about ancestral states or other comparative parameters. Here we present a general Bayesian approach for testing comparative hypotheses across statistically justified samples of phylogenies, focusing on the specific issue of reconstructing ancestral states. The method uses Markov chain Monte Carlo techniques for sampling phylogenetic trees and for investigating the parameters of a statistical model of trait evolution. We describe how to combine information about the uncertainty of the phylogeny with uncertainty in the estimate of the ancestral state. Our approach does not constrain the sample of trees only to those that contain the ancestral node or nodes of interest, and we show how to reconstruct ancestral states of uncertain nodes using a most-recent-common-ancestor approach. We illustrate the methods with data on ribonuclease evolution in the Artiodactyla. Software implementing the methods ( BayesMultiState) is available from the authors.
Resumo:
The potential for spatial dependence in models of voter turnout, although plausible from a theoretical perspective, has not been adequately addressed in the literature. Using recent advances in Bayesian computation, we formulate and estimate the previously unutilized spatial Durbin error model and apply this model to the question of whether spillovers and unobserved spatial dependence in voter turnout matters from an empirical perspective. Formal Bayesian model comparison techniques are employed to compare the normal linear model, the spatially lagged X model (SLX), the spatial Durbin model, and the spatial Durbin error model. The results overwhelmingly support the spatial Durbin error model as the appropriate empirical model.
Resumo:
This study analyzes organic adoption decisions using a rich set of time-to-organic durations collected from avocado small-holders in Michoacán Mexico. We derive robust, intrasample predictions about the profiles of entry and exit within the conventional-versus-organic complex and we explore the sensitivity of these predictions to choice of functional form. The dynamic nature of the sample allows us to make retrospective predictions and we establish, precisely, the profile of organic entry had the respondents been availed optimal amounts of adoption-restraining resources. A fundamental problem in the dynamic adoption literature, hitherto unrecognized, is discussed and consequent extensions are suggested.
Resumo:
We present a model of market participation in which the presence of non-negligible fixed costs leads to random censoring of the traditional double-hurdle model. Fixed costs arise when household resources must be devoted a priori to the decision to participate in the market. These costs, usually of time, are manifested in non-negligible minimum-efficient supplies and supply correspondence that requires modification of the traditional Tobit regression. The costs also complicate econometric estimation of household behavior. These complications are overcome by application of the Gibbs sampler. The algorithm thus derived provides robust estimates of the fixed-costs, double-hurdle model. The model and procedures are demonstrated in an application to milk market participation in the Ethiopian highlands.
Resumo:
Sensitivity and specificity are measures that allow us to evaluate the performance of a diagnostic test. In practice, it is common to have situations where a proportion of selected individuals cannot have the real state of the disease verified, since the verification could be an invasive procedure, as occurs with biopsy. This happens, as a special case, in the diagnosis of prostate cancer, or in any other situation related to risks, that is, not practicable, nor ethical, or in situations with high cost. For this case, it is common to use diagnostic tests based only on the information of verified individuals. This procedure can lead to biased results or workup bias. In this paper, we introduce a Bayesian approach to estimate the sensitivity and the specificity for two diagnostic tests considering verified and unverified individuals, a result that generalizes the usual situation based on only one diagnostic test.
Resumo:
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric ICC treats both correct and incorrect answers symmetrically, which results in a logical contradiction in ordering examinees on the ability scale. A data set corresponding to a mathematical test applied in Peruvian public schools is analyzed, where comparisons with other parametric IRT models also are conducted. Several model comparison criteria are discussed and implemented. The main conclusion is that the LPE and RLPE IRT models are easy to implement and seem to provide the best fit to the data set considered.
Resumo:
The main object of this paper is to discuss the Bayes estimation of the regression coefficients in the elliptically distributed simple regression model with measurement errors. The posterior distribution for the line parameters is obtained in a closed form, considering the following: the ratio of the error variances is known, informative prior distribution for the error variance, and non-informative prior distributions for the regression coefficients and for the incidental parameters. We proved that the posterior distribution of the regression coefficients has at most two real modes. Situations with a single mode are more likely than those with two modes, especially in large samples. The precision of the modal estimators is studied by deriving the Hessian matrix, which although complicated can be computed numerically. The posterior mean is estimated by using the Gibbs sampling algorithm and approximations by normal distributions. The results are applied to a real data set and connections with results in the literature are reported. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Relevant results for (sub-)distribution functions related to parallel systems are discussed. The reverse hazard rate is defined using the product integral. Consequently, the restriction of absolute continuity for the involved distributions can be relaxed. The only restriction is that the sets of discontinuity points of the parallel distributions have to be disjointed. Nonparametric Bayesian estimators of all survival (sub-)distribution functions are derived. Dual to the series systems that use minimum life times as observations, the parallel systems record the maximum life times. Dirichlet multivariate processes forming a class of prior distributions are considered for the nonparametric Bayesian estimation of the component distribution functions, and the system reliability. For illustration, two striking numerical examples are presented.