944 resultados para Basic dyes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of 'balanced' Ca, Mg, and K ratios, as prescribed by the basic cation saturation ratio (BCSR) concept, is still used by some private soil-testing laboratories for the interpretation of soil analytical data. This review aims to examine the suitability of the BCSR concept as a method for the interpretation of soil analytical data. According to the BCSR concept, maximum plant growth will be achieved only when the soil’s exchangeable Ca, Mg, and K concentrations are approximately 65 % Ca, 10 % Mg, and 5 % K (termed the ‘ideal soil’). This ‘ideal soil’ was originally proposed by Firman Bear and co-workers in New Jersey (USA) during the 1940s as a method of reducing luxury K uptake by alfalfa (Medicago sativa L.). At about the same time, William Albrecht, working in Missouri (USA), concluded through his own investigations that plants require a soil with a high Ca saturation for optimal growth. Whilst it now appears that several of Albrecht’s experiments were fundamentally flawed, the BCSR (‘balanced soil’) concept has been widely promoted, suggesting that the prescribed cationic ratios provide optimum chemical, physical, and biological soil properties. Our examination of data from numerous studies (particularly those of Albrecht and Bear, themselves) would suggest that, within the ranges commonly found in soils, the chemical, physical, and biological fertility of a soil is generally not influenced by the ratios of Ca, Mg, and K. The data do not support the claims of the BCSR, and continued promotion of the BCSR will result in the inefficient use of resources in agriculture and horticulture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Segregation of mRNAs in the cytoplasm of polar cells has been demonstrated for proteins involved in Xenopus and Drosophila oogenesis, and for some proteins in somatic cells. It is assumed that vectorial transport of the messages is generally responsible for this localization. The mRNA encoding the basic protein of central nervous system myelin is selectively transported to the distal ends of the processes of oligodendrocytes, where it is anchored to the myelin membrane and translated. This transport is dependent on a 21-nucleotide cis-acting segment of the 3'-untranslated region (RTS). Proteins that bind to this cis-acting segment have now been isolated from extracts of rat brain. A group of six 35-42-kDa proteins bind to a 35-base oligoribonucleotide incorporating the RTS, but not to several oligoribonucleotides with the same composition but randomized sequences, thus establishing specificity for the base sequence in the RTS. The most abundant of these proteins has been identified, by Edman sequencing of tryptic peptides and mass spectroscopy, as heterogeneous nuclear ribonucleoprotein (hnRNP) A2, a 36-kDa member of a family of proteins that are primarily, but not solely, intranuclear. This protein was most abundant in samples from rat brain and testis, with lower amounts in other tissues. It was separated from the other polypeptides by using reverse-phase HPLC and shown to retain preferential association with the RTS. In cultured oligodendrocytes, hnRNP A2 was demonstrated by confocal microscopy to be distributed throughout the nucleus, cell soma, and processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the present time, it is clear that Th1 responses afford protection against the fungi; however, the development, maintenance and function of the protective immune responses are complex mechanisms and are influenced by multiple factors. The route of infection has been shown to affect initial cytokine production and, consequently, the induction of protective Th1 responses. The ability of different isolates of the same fungal agent to induce and sustain a protective response has also been emphasized. Protective immune responses have been shown to vary in genetically different mouse strains after infection. In addition, these protective responses, such as cellular influx and cytokine production, also vary within the same animal depending on the tissue infected. The functional dominance of certain cytokines over others in influencing development and maintenance of protective responses has been discussed. Certain cytokines may act differently in hosts lacking important components of their innate or immune repertoire. It is evident from these presentations that a more comprehensive understanding of the protective mechanisms against different fungal agents is emerging. However, there is still much to learn before cytokine modulatory therapy can be used effectively without risk in the human host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The murine homologue of the TFEC was cloned as part of an analysis of the expression of the microphthalmia-TFE (MiT) subfamily of transcription factors in macrophages. TFEC, which most likely acts as a transcriptional repressor in heterodimers with other MiT family members, was identified in cells of the mononuclear phagocyte lineage, coexpressed,vith all other known MiT subfamily members (Mitf, TFE3, TFEB), Northern blot analysis of several different cell lineages indicated that the expression of murine TFEC (mTFEC) was restricted to macrophages. A 600-bp fragment of the TATA-less putative proximal promoter of TFEC shares features with many known macrophage-specific promoters and preferentially directs luciferase expression in the RAW264.7 macrophage cell line in transient transfection assays. Five of six putative Ets motifs identified in the TFEC promoter bind the macrophage-restricted transcription factor PU,I under in vitro conditions and in transfected 3T3 fibroblasts; the minimal luciferase activity of the TFEC promoter could be induced by coexpression of PU.1 or the related transcription factor Ets-2. The functional importance of the tissue-restricted expression of TFEC and a possible role in macrophage-specific gene regulation require further investigation, but are likely to be linked to the role of the other MiT family members in this lineage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) relies on the physical properties of unpaired protons in tissues to generate images. Unpaired protons behave like tiny bar magnets and will align themselves in a magnetic field. Radiofrequency pulses will excite these aligned protons to higher energy states. As they return to their original state, they will release this energy as radio waves. The frequency of the radio waves depends on the local magnetic field and by varying this over a subject, it is possible to build the images we are familiar with. In general, MRI has not been sufficiently sensitive or specific in the assessment of diffuse liver disease for clinical use. However, because of the specific characteristics of fat and iron, it may be useful in the assessment of hepatic steatosis and iron overload. Magnetic resonance imaging is useful in the assessment of focal liver disease, particularly in conjunction with contrast agents. Haemangiomas have a characteristic bright appearance on T-2 weighted images because of the slow flowing blood in dilated sinusoids. Focal nodular hyperplasia (FNH) has a homogenous appearance, and enhances early in the arterial phase after gadolinium injection, while the central scar typically enhances late. Hepatic adenomas have a more heterogenous appearance and also enhance in the arterial phase, but less briskly than FNH. Hepatocellular carcinoma is similar to an adenoma, but typically occurs in a cirrhotic liver and has earlier washout of contrast. The appearance of metastases depends on the underlying primary malignancy. Overall, MRI appears more sensitive and specific than computed tomography with contrast for the detection and evaluation of malignant lesions. (C) 2000 Blackwell Science Asia Pty Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some patients are no longer able to communicate effectively or even interact with the outside world in ways that most of us take for granted. In the most severe cases, tetraplegic or post-stroke patients are literally `locked in` their bodies, unable to exert any motor control after, for example, a spinal cord injury or a brainstem stroke, requiring alternative methods of communication and control. But we suggest that, in the near future, their brains may offer them a way out. Non-invasive electroencephalogram (EEG)-based brain-computer interfaces (BCD can be characterized by the technique used to measure brain activity and by the way that different brain signals are translated into commands that control an effector (e.g., controlling a computer cursor for word processing and accessing the internet). This review focuses on the basic concepts of EEG-based BC!, the main advances in communication, motor control restoration and the down-regulation of cortical activity, and the mirror neuron system (MNS) in the context of BCI. The latter appears to be relevant for clinical applications in the coming years, particularly for severely limited patients. Hypothetically, MNS could provide a robust way to map neural activity to behavior, representing the high-level information about goals and intentions of these patients. Non-invasive EEG-based BCIs allow brain-derived communication in patients with amyotrophic lateral sclerosis and motor control restoration in patients after spinal cord injury and stroke. Epilepsy and attention deficit and hyperactive disorder patients were able to down-regulate their cortical activity. Given the rapid progression of EEG-based BCI research over the last few years and the swift ascent of computer processing speeds and signal analysis techniques, we suggest that emerging ideas (e.g., MNS in the context of BC!) related to clinical neuro-rehabilitation of severely limited patients will generate viable clinical applications in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: This study evaluated the impact of 2 models of educational intervention on rates of central venous catheter-associated bloodstream infections (CVC-BSIs). Methods: This was a prospective observational study conducted between January 2005 and June 2007 in 2 medical intensive care units (designated ICU A and ICU B) in a large teaching hospital. The study was divided into in 3 periods: baseline (only rates were evaluated), preintervention (questionnaire to evaluate knowledge of health care workers [HCWs] and observation of CVC care in both ICUs), and intervention (in ICU A, tailored, continuous intervention; in ICU B, a single lecture). The preintervention and intervention periods for each ICU were compared. Results: During the preintervention period, 940 CVC-days were evaluated in ICUA and 843 CVC-days were evaluated in ICU B. During the intervention period, 2175 CVC-days were evaluated in ICUA and 1694 CVC-days were evaluated in ICU B. Questions regarding CVC insertion, disinfection during catheter manipulation, and use of an alcohol-based product during dressing application were answered correctly by 70%-100% HCWs. Nevertheless, HCWs` adherence to these practices in the preintervention period was low for CVC handling and dressing, hand hygiene (6%-35%), and catheter hub disinfection (45%-68%). During the intervention period, HCWs` adherence to hand hygiene was 48%-98%, and adherence to hub disinfection was 82%-97%. CVC-BSI rates declined in both units. In ICUA, this decrease was progressive and sustained, from 12CVC-BSIs/1000 CVC-days at baseline to 0 after 9 months. In ICU B, the rate initially dropped from 16.2 to 0 CVC-BSIs/1000 CVC-days, but then increased to 13.7 CVC-BSIs/1000 CVC-days. Conclusion: Personal customized, continuous intervention seems to develop a ""culture of prevention"" and is more effective than single intervention, leading to a sustained reduction of infection rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously isolated a Lys49 phospholipase A(2) homolog (BaTX) from Bothrops alternatus snake venom using a combination of molecular exclusion chromatography and reverse phase HPLC and shown its ability to cause neuromuscular blockade. In this work, we describe a one-step procedure for the purification of this toxin and provide further details of its neuromuscular activity. The toxin was purified by reverse phase HPLC and its purity and molecular mass were confirmed by SIDS-PAGE, MALDI-TOF mass spectrometry, amino acid analysis and N-terminal sequencing. BaTX (0.007-1.4 mu M) produced time-dependent, irreversible neuromuscular blockade in isolated mouse phrenic nerve-diaphragm and chick biventer cervicis preparations (time to 50% blockade with 0.35 mu M toxin: 58 +/- 4 and 24 +/- 1 min, respectively; n = 3-8; mean +/- S.E.) without significantly affecting the response to direct muscle stimulation. In chick preparations, contractures to exogenous acetylcholine (55 and 110 mu M) or KCl (13.4 mM) were unaltered after complete blockade by all toxin concentrations. These results, which strongly suggested a presynaptic mechanism of action for this toxin, were reinforced by (1) the inability of BaTX to interfere with the carbachol-induced depolarization of the resting membrane, (2) a significant decrease in the frequency and amplitude of miniature end-plate potentials, and (3) a significant reduction (59 +/- 4%, n=12) in the quantal content of the end-plate potentials after a 60 min incubation with the toxin (1.4 mu M). In addition, a decrease in the organ bath temperature from 37 degrees C to 24 degrees C and/or the replacement of calcium with strontium prevented the neuromuscular blockade, indicating a temperature-dependent effect possibly mediated by enzymatic activity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vascular manifestations associated with diabetes mellitus (DM) result from the dysfunction of several vascular physiology components mainly involving the endothelium, vascular smooth muscle and platelets. It is also known that hyperglycemia-induced oxidative stress plays a role in the development of this dysfunction. This review considers the basic physiology of the endothelium, especially related to the synthesis and function of nitric oxide. We also discuss the pathophysiology of vascular disease associated with DM. This includes the role of hyperglycemia in the induction of oxidative stress and the role of advanced glycation end-products. We also consider therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To investigate the retinal biocompatibility of six novel vital dyes for chromovitrectomy. Methods: An amount of 0.05 mL of 0.5% and 0.05% light green (LG), fast green (FG), Evans blue (EB), brilliant blue (BriB), bromophenol blue (BroB), or indigo carmine (IC) was injected intravitreally in the right eye, whereas in the left eye balanced salt solution was applied for control in rabbits` eyes. Clinical examination, fluorescein angiography, histology with light microscopy, and transmission electron microscopy were performed after 1 and 7 days. Retinal cell layers were evaluated for morphologic alterations and number of cells. The electroretinographic changes were assessed at baseline, 24 hours and 7 days. Results: Fluorescein angiography disclosed hypofluorescent spots only in the 0.5% EB group. Light microscopy and transmission electron microscopy disclosed slight focal morphologic changes in eyes exposed to 0.05% IC, FG, BriB, similar to the control at 1 and 7 days. In the lower dose groups, EB, LG, and BroB caused substantial retinal alterations by light microscopy. At the higher dose, BroB and EB produced diffuse cellular edema and vacuolization within the ganglion cells, bipolar cells, and photoreceptors. FG and IC at 0.5% caused slight retinal alterations similar to balanced salt solution injection. LG at 0.5% caused diffuse vacuolization of bipolar cells after 1 and 7 days. Injection of 0.5% EB caused a significant decrease in neuroretinal cell counts in comparison to control eyes in the 7-day examination (P < 0.05). Electroretinography revealed intermittent prolonged latency and decreased amplitude in eyes injected with 0.5% EB, LG, BriB, and BroB, while at the lower dose, only LG and EB induced few functional changes. Conclusion: The progressive order of retinal biocompatibility, from safest to most toxic, was IC, FG, BriB, BroB, LG, EB.