996 resultados para Barrier performance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present how a thin RF sputtered layer of lanthanum oxide (La2O3) can alter electrical and improve hydrogen gas sensing characteristics of Pt/molybdenum oxide (MoO3) nanostructures Schottky diodes. We derived the barrier height, ideality factor and dielectric constant from the measured I–V characteristics at operating temperatures in the range of 25–300 ◦C. The dynamic response, response and recovery times were obtained upon exposure to hydrogen gas at different concentrations. Analysis of the results indicated a substantial improvement to the voltage shift sensitivity of the sensors incorporating the La2O3 layer. We associate this enhancement to the formation of numerous trap states due to the presence of the La2O3 thin film on the MoO3 nanoplatelets. These trap states increase the intensity of the dipolar charges at the metal–semiconductor interface, which induce greater bending of the energy bands. However, results also indicate that the presence of La2O3 trap states also increases response and recover times as electrons trapping and de-trapping processes occur before they can pass through this thin dielectric layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We applied a texture-based flow visualisation technique to a numerical hydrodynamic model of the Pumicestone Passage in southeast Queensland, Australia. The quality of the visualisations using our flow visualisation tool, are compared with animations generated using more traditional drogue release plot and velocity contour and vector techniques. The texture-based method is found to be far more effective in visualising advective flow within the model domain. In some instances, it also makes it easier for the researcher to identify specific hydrodynamic features within the complex flow regimes of this shallow tidal barrier estuary as compared with the direct and geometric based methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents material and gas sensing properties of Pt/SnO2 nanowires/SiC metal oxide semiconductor devices towards hydrogen. The SnO2 nanowires were deposited onto the SiC substrates by vapour-liquid-solid growth mechanism. The material properties of the sensors were investigated using scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The current-voltage characteristics have been analysed. The effective change in the barrier height for 1% hydrogen was found to be 142.91 meV. The dynamic response of the sensors towards hydrogen at different temperatures has also been studied. At 530°C, voltage shift of 310 mV for 1% hydrogen was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, Portable Water-filled barriers (PWFB) face challenges such as large lateral displacements, tearing and breakage during impact; especially at higher speeds. This study explores the use of composite action to enhance the crashworthiness of PWFBs and enable their usage at higher speeds. Initially, energy absorption capability of water in PWFB is investigated. Then, composite action of the PWFB with the introduction of steel frame is considered to evaluate its enhanced impact performance. Findings of the study show that the initial height of the impact must be lower than the free surface level of water in a PWFB in order for the water to provide significant crash energy absorption. In general, an impact of a road barrier with 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacements and sloshing response. Information from this research will aid in the design of new generation roadside safety structures aimed to increase safety in modern roadways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, there are challenges when using portable water-filled barriers (PWFBs) such as large lateral displacements as well as tearing and breakage during impact, especially at higher speeds. In this study, the authors explore the use of composite action to enhance the crashworthiness of PWFBs and enable their use at higher speeds. Initially, we investigated the energy absorption capability of water in PWFB. Then, we considered the composite action of a PWFB with the introduction of a steel frame to evaluate its impact on performance. Findings of the study show that the initial height of impact must be lower than the free surface level of water in a PWFB for the water to provide significant crash energy absorption. In general, impact of a road barrier that is 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacement and sloshing response. Information from this research will aid in the design of next generation roadside safety structures aimed to increase safety on modern roadways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis provides an experimental and computational platform for investigating the performance and behaviour of water filled, plastic portable road safety barriers in an isolated impact scenario. A schedule of experimental impact tests were conducted assessing the impact response of an existing design of road safety barrier utilising a novel horizontal impact testing system. A coupled finite element and smooth particle hydrodynamic model of the barrier system was developed and validated against the results of the experimental tests. The validated model was subsequently used to assess the effect of certain composite materials on the impact performance of the water filled, portable road safety barrier system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research has developed an innovative road safety barrier system that will enhance roadside safety. In doing so, the research developed new knowledge in the field of road crash mitigation for high speed vehicle impact involving plastic road safety barriers. This road safety barrier system has the required feature to redirecting an errant vehicle with limited lateral displacement. Research was carried out using dynamic computer simulation technique support by experimental testing. Future road safety barrier designers may use the information in this research as a design guideline to improve the performance and redirectional capability of the road safety barrier system. This will lead to better safety conditions on the roadways and potentially save lives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular “wall” representative of a 30 m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier “wall” and the vehicle was obtained and the results show that a rotational stiffness of 3000 kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Portable water-filled barriers (PWFB) are roadside structures used to enhance safety at roadside work-zones. Ideally, a PWFB system is expected to protect persons and objects behind it and redirect the errant vehicle. The performance criteria of a road safety barrier system are (i) redirection of the vehicle after impact and (ii) lateral deflection within allowable limits. Since its inception, the PWFB has received criticism due to its underperformance compared to the heavier portable concrete barrier. A new generation composite high energy absorbing road safety barrier was recently developed by the authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2) is the main objective whiles the correlation between PM, O3 and CO2 is considered. A dielectric barrier discharge reactor has been designed with pulsed power technology to produce plasma inside the diesel exhaust. To characterise the system under varied conditions, a range of applied voltages from 11 kVPP to 21kVPP at repetition rates of 2.5, 5, 7.5 and 10 kHz, have been experimentally investigated. The results show that by increasing the applied voltage and repetition rate, higher discharge power and CO2 dissociation can be achieved. The PM removal efficiency of more than 50% has been achieved during the experiments and high concentrations of ozone on the order of a few hundreds of ppm have been observed at high discharge powers. Furthermore, O3, CO2 and PM concentrations at different plasma states have been analysed for time dependence. Based on this analysis, an inverse relationship between ozone concentration and PM removal has been found and the role of ozone in PM removal in plasma treatment of diesel exhaust has been highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim Assessment of entry-level health professionals is complex, especially in the work-based setting, placing additional pressures on these learning environments. The present study aims to gain understanding and ideally consensus regarding the setting for assessment of all elements of competence for entry-level dietitians across Australia. Methods Seventy-five experienced academic and practitioner assessors were invited to participate in an online Delphi survey. The 166 entry-level performance criteria of the competency standards for dietitians formed the basis of the questions in the survey, with rating on which ones could be assessed in the practice setting, those which could be assessed in a classroom/university setting and which could be assessed in either setting. Forty-three of 75 invited assessors responded to the first round of the Delphi. A second modified survey was sent to the 43 participants with 34 responding. Results Consensus was achieved for the assessment setting for 86 (52%) of the performance criteria after two rounds of surveying. The majority of these performance criteria achieved consensus at round one (n = 44) and were deemed to be best assessed in the practice setting (n = 55). This study highlighted the perspectives of assessors and their preference for the work-based setting for assessment. Conclusions To reduce the focus on work-based settings as the only place for competence-based assessment of health professionals, there is a need to support individual and organisational change through challenging existing norms around assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of present generation uncooled Hg1-xCdxTe infrared photon detectors relies on complex heterostructures with a basic unit cell of type (n) under bar (+)/pi/(p) under bar (+). We present an analysis of double barrier (n) under bar (+)/pi/(p) under bar (+) mid wave infrared (x = 0.3) HgCdTe detector for near room temperature operation using numerical computations. The present work proposes an accurate and generalized methodology in terms of the device design, material properties, and operation temperature to study the effects of position dependence of carrier concentration, electrostatic potential, and generation-recombination (g-r) rates on detector performance. Position dependent profiles of electrostatic potential, carrier concentration, and g-r rates were simulated numerically. Performance of detector was studied as function of doping concentration of absorber and contact layers, width of both layers and minority carrier lifetime. Responsivity similar to 0.38 A W-1, noise current similar to 6 x 10(-14) A/Hz(1/2) and D* similar to 3.1 x 10(10)cm Hz(1/2) W-1 at 0.1 V reverse bias have been calculated using optimized values of doping concentration, absorber width and carrier lifetime. The suitability of the method has been illustrated by demonstrating the feasibility of achieving the optimum device performance by carefully selecting the device design and other parameters. (C) 2010 American Institute of Physics. doi:10.1063/1.3463379]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Improved performance of plasma in raw engine exhaust treatment is reported. A new type of reactor referred to as of cross-flow dielectric barrier discharge (DBD) was used, in which the gas flow is perpendicular to the corona electrode. In raw exhaust environment, the cross-flow (radial-flow) reactor exhibits a superior performance with regard to NOX removal when compared to that with axial flow of gas. Experiments were conducted at different flow rates ranging from 2 L/min to 25 L/min. The plasma assisted barrier discharge reactor has shown encouraging results in NOx removal at high flow rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports improved performance of discharge plasma in filtered engine exhaust treatment. Our paper deals about the removal of NOX emissions from the diesel exhaust by electric discharge plasma. For the treatment of diesel exhaust a new type of reactor referred to as crossflow dielectric barrier discharge reactor has been used, where the gas flow is perpendicular to the corona electrode. Experiments were conducted at different flow rates ranging from 2 l/min to 10 l/min. The discharge plasma assisted barrier discharge reactor has shown promising results in NOX removal at high flow rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports improved performance of advantages when compared to its counterpart as it is cost discharge plasma in filtered engine exhaust treatment. Our effective, low capital and operation costs, salable by- paper deals about the removal of NOX emissions from the diesel products, and integration with the existing systems. In this exhaust by electric discharge plasma. For the treatment of diesel paper we describe an alternate reactor geometry referred to exhaust a new type of reactor referred to as cross-flow dielectric as cross-flow DBD reactor, where the exhaust gas flow barrier discharge reactor has been used, where the gas flow is perpendicular to the wire-cylinder reaction chamber. This perpendicular to the corona electrode. Experiments were reactor is used to treat the actual exhaust of a 3.75 kW diesel- conducted at different flow rates ranging from 2 l/min to 10 l/ generator set. The main emphasis is laid on the NOX treatment min. The discharge plasma assisted barrier discharge reactor of diesel engine exhaust. Experiments were carried out at has shown promising results in NOX removal at high flow rates.