992 resultados para Barium-neodymium titanate
Resumo:
Recently, there has been growing interest in Ca modified BaTiO3 structures due to their larger electro-optic coefficients for their use in optical storage of information over conventional BaTiO3 crystals. Barium Calcium Titanate (BCT) shows promising applications in advanced laser systems, optical interconnects and optical storage devices. BaTiO3 thin films of varied Ca (3 at. % - 15 at. %) doping were deposited using pulsed laser ablation (KrF excimer laser) technique over Pt/Si substrates. The stoichiometric and the compositional analysis were carried out using EDAX and SIMS. The dielectric studies were done at the frequency regime of 40 Hz to 100 kHz at different ambient temperatures from 200 K to 600 K. The BCT thin films exhibited diffuse phase transition, which was of a typical non lead relaxor behavior and had high dielectric constant and low dielectric loss. The phase transition for the different compositions of BCT thin films was near the room temperature, showing a marked departure from the bulk phase transition. The C - V and the hysteresis behavior confirmed the ferroelectric nature below the phase transition and paraelectric at the room temperature.
Resumo:
Barium zirconium titanate [Ba(Zr0.05Ti0.95)O3, BZT] thin films were prepared by pulsed laser ablation technique and dc leakage current conduction behavior was extensively studied. The dc leakage behavior study is essential, as it leads to degradation of the data storage devices. The current-voltage (I-V) of the thin films showed an Ohmic behavior for the electric field strength lower than 7.5 MV/m. Nonlinearity in the current density-voltage (J-V) behavior has been observed at an electric field above 7.5 MV/m. Different conduction mechanisms have been thought to be responsible for the overall I-V characteristics of BZT thin films. The J-V behavior of BZT thin films was found to follow Lampert’s theory of space charge limited conduction similar to what is observed in an insulator with charge trapping moiety. The Ohmic and trap filled limited regions have been explicitly observed in the J-V curves, where the saturation prevailed after a voltage of 6.5 V referring the onset of a trap-free square region. Two different activation energy values of 1.155 and 0.325 eV corresponding to two different regions have been observed in the Arrhenius plot, which was attributed to two different types of trap levels present in the film, namely, deep and shallow traps.
Structural refinement, optical and electrical properties of Ba1-x Sm-2x/3](Zr0.05Ti0.95)O-3 ceramics
Resumo:
Samarium doped barium zirconate titanate ceramics with general formula Ba1-x Sm-2x/3](Zr0.05Ti0.95)O-3 x = 0, 0.01, 0.02, and 0.03] were prepared by high energy ball milling method. X-ray diffraction patterns and micro-Raman spectroscopy confirmed that these ceramics have a single phase with a tetragonal structure. Rietveld refinement data were employed to model BaO12], SmO12], ZrO6], and TiO6] clusters in the lattice. Scanning electron microscopy shows a reduction in average grain size with the increase of Sm3+ ions into lattice. Temperature-dependent dielectric studies indicate a ferroelectric phase transition and the transition temperature decreases with an increase in Sm3+ ion content. The nature of the transition was investigated by the Curie-Weiss law and it is observed that the diffusivity increases with Sm3+ ion content. The ferroelectric hysteresis loop illustrates that the remnant polarization and coercive field increase with an increase in Sm3+ ions content. Optical properties of the ceramics were studied using ultraviolet-visible diffuse reflectance spectroscopy.
Resumo:
Thin-film capacitors, with barium strontium titanate (BST) dielectric layers between 7.5 and 950 nm in thickness, were fabricated by pulsed-laser deposition. Both crystallography and cation chemistry were consistent with successful growth of the BST perovskite. At room temperature, all capacitors displayed frequency dispersion such that epsilon (100 kHz)/epsilon (100 Hz) was greater than 0.75. The dielectric constant as a function of thickness was fitted, using the series capacitor model, for BST thicknesses greater than 70 nm. This yielded a large interfacial d(i)/epsilon (i) ratio of 0.40 +/-0.05 nm, implying a highly visible parasitic dead layer within the capacitor structure. Modeled consideration of the dielectric behavior for BST films, whose total thickness was below that of the dead layer, predicted anomalies in the plots of d/epsilon against d at the dead-layer thickness. In the capacitors studied here, no anomaly was observed. Hence, either (i) 7.5 nm is an upper limit for the total dead-layer thickness in the SRO/BST/Au system, or (ii) dielectric collapse is not associated with a distinct interfacial dead layer, and is instead due to a through-film effect. (C) 2001 American Institute of Physics.
Resumo:
Experimental studies are reported concerning the importance of interfacial capacitance (including electrode screening, space-charge layers, and/or chemically discrete dead layers). on domain switching behaviour in thin films of ferroelectric lead zirconate-titanate (PZT), strontium bismuth tantalate (SBT), and barium strontium titanate (BST). Emphasis is placed upon studies at applied field values very near the coercive field E, asymmetry in fatigue for positive and negative polarity coercive fields, and in the case of BST, of the coexistence of ferroelectric and paraelectric phases Studies of dielectric loss show important correlations between tan 6 and fatigue (polarization decrease) as a function of bipolar switching cycles N. This is a priori not obvious, since the former is a linear response and the latter, a nonlinear response. Modelling of enlarged interfacial,space-charge layers in PZT films and chemically distinct dead (paraelectric) layers in BST films shows contradictory tendencies of coercive-voltage changes with the growth of passive layers.
Resumo:
We have conducted a broad survey of switching behavior in thin films of a range of ferroelectric materials, including some materials that are not typically considered for FeRAM applications, and are hence less studied. The materials studied include: strontium bismuth tantalate (SBT), barium strontium titanate (BST), lead zicronate titanate (PZT), and potassium nitrate (KNO3). Switching in ferroelectric thin films is typically considered to occur by domain nucleation and growth. We discuss two models of frequency dependence of coercive field, the Ishisbashi-Orihara theory where the limiting step is domain growth and the model of Du and Chen where the limiting step is nucleation. While both models fit the data fairly well the temperature dependence of our results on PZT and BST suggest that the nucleation model of Du and Chen is more appropriate for the experimental results that we have obtained.
Resumo:
The photoacoustic investigations carried out on different photonic materials are presented in this thesis. Photonic materials selected for the investigation are tape cast ceramics, muItilayer dielectric coatings, organic dye doped PVA films and PMMA matrix doped with dye mixtures. The studies are performed by the measurement of photoacoustic signal generated as a result of modulated cw laser irradiation of samples. The gas-microphone scheme is employed for the detection of photoacoustic signal. The different measurements reported here reveal the adaptability and utility of the PA technique for the characterization of photonic materials.Ceramics find applications in the field of microelectronics industry. Tape cast ceramics are the building blocks of many electronic components and certain ceramic tapes are used as thermal barriers. The thermal parameters of these tapes will not be the same as that of thin films of the same materials. Parameters are influenced by the presence of foreign bodies in the matrix and the sample preparation technique. Measurements are done on ceramic tapes of Zirconia, Zirconia-Alumina combination, barium titanate, barium tin titanate, silicon carbide, lead zirconate titanateil'Z'T) and lead magnesium niobate titanate(PMNPT). Various configurations viz. heat reflection geometry and heat transmission geometry of the photoacoustic technique have been used for the evaluation of different thermal parameters of the sample. Heat reflection geometry of the PA cell has been used for the evaluation of thermal effusivity and heat transmission geometry has been made use of in the evaluation of thermal diffusivity. From the thermal diffusivity and thermal effusivity values, thermal conductivity is also calculated. The calculated values are nearly the same as the values reported for pure materials. This shows the feasibility of photoacoustic technique for the thermal characterization of ceramic tapes.Organic dyes find applications as holographic recording medium and as active media for laser operations. Knowledge of the photochemical stability of the material is essential if it has to be used tor any of these applications. Mixing one dye with another can change the properties of the resulting system. Through careful mixing of the dyes in appropriate proportions and incorporating them in polymer matrices, media of required stability can be prepared. Investigations are carried out on Rhodamine 6GRhodamine B mixture doped PMMA samples. Addition of RhB in small amounts is found to stabilize Rh6G against photodegradation and addition of Rh6G into RhB increases the photosensitivity of the latter. The PA technique has been successfully employed for the monitoring of dye mixture doped PMMA sample. The same technique has been used for the monitoring of photodegradation ofa laser dye, cresyl violet doped polyvinyl alcohol also.Another important application of photoacoustic technique is in nondestructive evaluation of layered samples. Depth profiling capability of PA technique has been used for the non-destructive testing of multilayer dielectric films, which are highly reflecting in the wavelength range selected for investigations. Eventhough calculation of thickness of the film is not possible, number of layers present in the system can be found out using PA technique. The phase plot has clear step like discontinuities, the number of which coincides with the number of layers present in the multilayer stack. This shows the sensitivity of PA signal phase to boundaries in a layered structure. This aspect of PA signal can be utilized in non-destructive depth profiling of reflecting samples and for the identification of defects in layered structures.
Resumo:
Ba0.77Ca0.23TiO3 (BCT23) nanometric powders, synthesized by the modified Pechini method, were used as precursor to produce thick films (50-130 mu m) employing the electrophoretic deposition (EPD) technique. The BCT23 powder presented a single crystalline phase with an average particle size and a crystallite size of similar to 60 nm and similar to 20 nm, respectively, when calcined at 800 degrees C/2h. BCT23 thick films were deposited on platinum substrates starting from different suspensions prepared by dispersion of the powder into: isopropyl alcohol (IPA) or a mixture of acetylacetone (Acac) and ethanol (EtOH) (1:1, volumetric ratio). A milling process was used to deagglomerate the powders in order to increase the suspension stability and improving the deposition. Dense and crack free thick films with uniform microstructure were obtained after sintering at 1300 degrees C/2 h from Acac+EtOH solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ba(Zr0.10Ti0.90)O3 (BZT10) and W+ 6 substituted BZT ceramics (BZT10:W) were prepared by mixed oxide method. The effect of W+ 6 addition in the BZT was evaluated by X-ray diffraction (XRD), dilatometer analysis, microstructural and dielectrical properties. When tungsten is introduced in the BZT lattice, a decrease in the grain size and shift on Curie temperature to lower value besides broadening of dielectric permittivity is evident. This is due repulsion between tungsten and their nearest neighbors leading to a structure which is tetragonal distorted. The sintering temperature is reduced when tungsten is introduced in the BZT lattice.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Barium strontium titanate (Ba0.8Sr0.2TiO3) thin films have been prepared on Pt/Ti/SiO2/Si substrates using a soft solution processing. X-ray diffraction and also micro-Raman spectroscopy showed that the Ba0.8Sr0.2TiO3 thin films exhibited a tetragonal structure at room temperature. The presence of Raman active modes was clearly shown at the 299 and 725 cm(-1) peaks. The tetragonal-to-cubic phase transition in the Ba0.8Sr0.2TiO3 thin films is broadened, and suppressed at about 35 degreesC, with a maximum dielectric constant of 948 (100 kHz). Electrical measurements for the prepared Ba0.8Sr0.2TiO3 thin films showed a remnant polarization (P-r) of 6.5 muC/cm(2), a coercive field (E-c) of 41 kV/cm, and good insulating properties. The dispersion of the refractive index is interpreted in terms of a single electronic oscillator at 6.97 eV. The direct band gap energy (E-g) and the refractive index (n) are estimated to be 3.3 eV and n = 2.27-2.10, respectively. (C) 2002 American Institute of Physics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work we optimized conditions for aerosol deposition of homogeneous, nano-grained, smooth Ba0.8Sr0.2TiO3 thin films. Investigation involved optimization of deposition parameters, namely deposition time and temperature for different substrates. Solutions were prepared from titanium isopropoxide, strontium acetate and barium acetate. Films were deposited on Si (1 0 0) or Si covered by platinum (Pt (1 1 1) /Ti/SiO2/Si). Investigation showed that the best films were obtained at substrate temperature of 85 degrees C. After deposition films were slowly heated up to 650 degrees C, annealed for 30 min, and slowly cooled. Grain size of BST films deposited on Si substrate were in the range 40-70 nm, depending on deposition conditions, while the same films deposited on Pt substrates showed mean grain size in the range 35-50 nm. Films deposited under optimal conditions were very homogeneous, crack-free, and smooth with rms roughness lower than 4 nm for both substrates.
Resumo:
Barium zirconate titanate Ba(Ti0.90Zr0.10)O3 ceramics doped with WO
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)