443 resultados para BOTHROPS ATROX
Resumo:
The neuromuscular activity of venom from Bothrops fonsecai, a lancehead endemic to southeastern Brazil, was investigated. Chick biventer cervicis (CBC) and mouse phrenic nerve-diaphragm (PND) preparations were used for myographic recordings and mouse diaphragm muscle was used for membrane resting potential (RP) and miniature end-plate potential (MEPP) recordings. Creatine kinase release and muscle damage were also assessed. In CBC, venom (40, 80 and 160μg/ml) produced concentration- and time-dependent neuromuscular blockade (50% blockade in 85±9 min and 73±8 min with 80 and 160μg/ml, respectively) and attenuated the contractures to 110μM ACh (78-100% inhibition) and 40mM KCl (45-90% inhibition). The venom-induced decrease in twitch-tension in curarized, directly-stimulated preparations was similar to that in indirectly stimulated preparations. Venom (100 and 200μg/ml) also caused blockade in PND preparations (50% blockade in 94±13 min and 49±8 min with 100 and 200μg/ml, respectively) but did not alter the RP or MEPP amplitude. In CBC, venom caused creatine kinase release and myonecrosis. The venom-induced decrease in twitch-tension and in the contractures to ACh and K(+) were abolished by preincubating venom with commercial antivenom. These findings indicate that Bothrops fonsecai venom interferes with neuromuscular transmission essentially through postsynaptic muscle damage that affects responses to ACh and KCl. These actions are effectively prevented by commercial antivenom.
Resumo:
In this study, we show that administration of Bothrops moojeni venom in rats induces a general disturbance in the distribution and content of the tight junctional protein ZO-1, the cell-matrix receptor beta 1 integrin, the cytoskeletal proteins, vinculin and F-actin, and of the extracellular matrix component laminin in renal corpuscles and cortical nephron tubules. These findings suggest that cell-cell and cell-matrix adhesion proteins may be molecular targets in the B. moojeni-induced kidney injury.
Resumo:
A new PLA2 (Bp-13) was purified from Bothrops pauloensis snake venom after a single chromatographic step of RP-HPLC on μ-Bondapak C-18. Amino acid analysis showed a high content of hydrophobic and basic amino acids and 14 half-cysteine residues. The N-terminal sequence showed a high degree of homology with basic Asp49 PLA2 myotoxins from other Bothrops venoms. Bp-13 showed allosteric enzymatic behavior and maximal activity at pH 8.1, 36°-45°C. Full Bp-13 PLA2 activity required Ca(2+); its PLA2 activity was inhibited by Mg(2+), Mn(2+), Sr(2+), and Cd(2+) in the presence and absence of 1 mM Ca(2+). In the mouse phrenic nerve-diaphragm (PND) preparation, the time for 50% paralysis was concentration-dependent (P < 0.05). Both the replacement of Ca(2+) by Sr(2+) and temperature lowering (24°C) inhibited the Bp-13 PLA2-induced twitch-tension blockade. Bp-13 PLA2 inhibited the contractile response to direct electrical stimulation in curarized mouse PND preparation corroborating its contracture effect. In biventer cervicis preparations, Bp-13 induced irreversible twitch-tension blockade and the KCl evoked contracture was partially, but significantly, inhibited (P > 0.05). The main effect of this new Asp49 PLA2 of Bothrops pauloensis venom is on muscle fiber sarcolemma, with avian preparation being less responsive than rodent preparation. The study enhances biochemical and pharmacological characterization of B. pauloensis venom.
Resumo:
Preeclampsia, a pregnancy-specific syndrome characterized by hypertension, proteinuria and edema, is a major cause of fetal and maternal morbidity and mortality especially in developing countries. Bj-PRO-10c, a proline-rich peptide isolated from Bothrops jararaca venom, has been attributed with potent anti-hypertensive effects. Recently, we have shown that Bj-PRO-10c-induced anti-hypertensive actions involved NO production in spontaneous hypertensive rats. Using in vitro studies we now show that Bj-PRO-10c was able to increase NO production in human umbilical vein endothelial cells from hypertensive pregnant women (HUVEC-PE) to levels observed in HUVEC of normotensive women. Moreover, in the presence of the peptide, eNOS expression as well as argininosuccinate synthase activity, the key rate-limiting enzyme of the citrulline-NO cycle, were enhanced. In addition, excessive superoxide production due to NO deficiency, one of the major deleterious effects of the disease, was inhibited by Bj-PRO-10c. Bj-PRO-10c induced intracellular calcium fluxes in both, HUVEC-PE and HUVEC, which, however, led to activation of eNOS expression only in HUVEC-PE. Since Bj-PRO-10c promoted biological effects in HUVEC from patients suffering from the disorder and not in normotensive pregnant women, we hypothesize that Bj-PRO-10c induces its anti-hypertensive effect in mothers with preeclampsia. Such properties may initiate the development of novel therapeutics for treating preeclampsia.
Resumo:
Baroreflex sensitivity is disturbed in many people with cardiovascular diseases such as hypertension. Brain deficiency of nitric oxide (NO), which is synthesized by NO synthase (NOS) in the citrulline-NO cycle (with argininosuccinate synthase (ASS) activity being the rate-limiting step), contributes to impaired baroreflex. We recently showed that a decapeptide isolated from Bothrops jararaca snake venom, denoted Bj-PRO-10c, exerts powerful and sustained antihypertensive activity. Bj-PRO-10c promoted vasodilatation dependent on the positive modulation of ASS activity and NO production in the endothelium, and also acted on the central nervous system, inducing the release of GABA and glutamate, two important neurotransmitters in the regulation of autonomic systems. We evaluated baroreflex function using the regression line obtained by the best-fit points of measured heart rate (HR) and mean arterial pressure (MAP) data from spontaneously hypertensive rats (SHRs) treated with Bj-PRO-10c. We also investigated molecular mechanisms involved in this effect, both in vitro and in vivo. Bj-PRO-10c mediated an increase in baroreflex sensitivity and a decrease in MAP and HR. The effects exerted by the peptide include an increase in the gene expression of endothelial NOS and ASS. Bj-PRO-10c-induced NO production depended on intracellular calcium fluxes and the activation of a G(i/o)-protein-coupled metabotropic receptor. Bj-PRO-10c induced NO production and the gene expression of ASS and endothelial NOS in the brains of SHRs, thereby improving baroreflex sensitivity. Bj-PRO-10c may reveal novel approaches for treating diseases with impaired baroreflex function. Hypertension Research (2010) 33, 1283-1288; doi: 10.1038/hr.2010.208
Resumo:
In this study, the production of prostaglandin E(2) (PGE(2)) and up-regulation in cyclooxygenase (COX) pathway induced by a phospholipase A(2) (PLA(2)), myotoxin-III (MT-III), purified from Bothrops asper snake venom, in isolated neutrophils were investigated. The arachidonic acid (AA) production and the participation of intracellular PLA(2)s (cytosolic PLA(2) and Ca(2+)-independent PLA(2)) in these events were also evaluated. MT-III induced COX-2, but not COX-1 gene and protein expression in neutrophils and increased PGE(2) levels. Pretreatment of neutrophils with COX-2 and COX-1 inhibitors reduced PGE(2) production induced by MT-III. Arachidonyl trifluoromethyl ketone (AACOCF(3)), an intracellular PLA(2) inhibitor, but not bromoenol lactone (BEL), an iPLA(2) inhibitor, suppressed the MT-III-induced AA and PGE(2) release. In conclusion, MT-III directly stimulates neutrophils inducing COX-2 mRNA and protein expression followed by production of PGE(2). COX-2 isoform is preeminent over COX-1 for production of PGE(2) stimulated by MT-III. PGE(2) and AA release by MT-III probably is related to cPLA(2) activation. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effects of myotoxin III (MT-III), a phospholipase A(2) (sPLA(2)) from Bothrops asper snake venom, and crotoxin B (CB), a neurotoxic and myotoxic sPLA2 from the venom of Crotalus durissus terrificus, on cyclooxygenases (COXs) expression and biosynthesis of prostaglandins (PGs) were evaluated, together with the mechanisms involved in these effects. Upon intraperitoneal injection in mice, both sPLA(2)s promoted the synthesis of PGD(2) and PGE(2), with a different time-course. MT-III, but not CB, induced COX-2 expression by peritoneal leukocytes without modification on COX-1 constitutive expression, whereas CB increased the constitutive activity of COX-1. MT-III increased the enzymatic activity of COX-1 and COX-2. Similar effects were observed when these sPLA(2)s were incubated with isolated macrophages, evidencing a direct effect on these inflammatory cells. Moreover, both toxins elicited the release of arachidonic acid from macrophages in vitro. inhibition of cPLA(2) by AACOCF(3), but not of iPLA(2) by PACOCF(3) or BEL, significantly reduced PGD2, PGE2 and arachidonic acid (AA) release promoted by MT-III. These inhibitors did not affect MT-III-induced COX-2 expression. In contrast, cPLA2 inhibition did not modify the effects of CB, whereas iPLA2 inhibition reduced PGD2 and AA production induced by CB. These findings imply that distinct regulatory mechanisms leading to PGs` synthesis are triggered by these snake venom sPLA(2)s. Such differences are likely to explain the dissimilar patterns of inflammatory reaction elicited by these sPLA(2)s in vivo. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Phospholipase A(2) (PLA(2), EC 3.1.1.4), a major component of snake venoms, specifically catalyzes the hydrolysis of fatty acid ester bonds at position 2 of 1,2-diacyl-sn-3-phosphoglycerides in the presence of calcium. This article reports the purification and biochemical/functional characterization of BmooTX-I, a new myotoxic acidic phospholipase A(2) from Bothrops moojeni snake venom. The purification of the enzyme was carried out through three chromatographic steps (ion-exchange on DEAE-Sepharose, molecular exclusion on Sephadex G-75 and hydrophobic chromatography on Phenyl-Sepharose). BmooTX-I was found to be a single-chain protein of 15,000 Da and pI 4.2. The N-terminal sequence revealed a high homology with other acidic Asp49 PLA(2)S from Bothrops snake venoms. It displayed a high phospholipase activity and platelet aggregation inhibition induced by collagen or ADP. Edema and myotoxicity in vivo were also induced by BmooTX-I. Analysis of myotoxic activity was carried out by optical and ultrastructural microscopy, demonstrating high levels of leukocytary infiltrate. Previous treatment of BmooTX-1 with BPB reduced its enzymatic and myotoxic activities, as well as the effect on platelet aggregation. Acidic myotoxic PLA(2)S from Bothrops snake venoms have been little explored and the knowledge of its structural and functional features will be able to contribute for a better understanding of their action mechanism regarding enzymatic and toxic activities. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work, a new weakly hemorrhagic metalloproteinase (BthMP) was purified from Bothrops moojeni snake venom. This enzyme was homogeneous by native and SDS-PAGE. It showed a polypeptide chain of 23.5 kDa, pI=7.1, and N-terminal blocked. BthMP is comprised of high proteolytic activity on casein, fibrin and bovine fibrinogen, with no coagulating, esterase or phospholipase A(2) activities; it was inhibited by EDTA, EGTA and 1,10-phenanthroline and maintained its activity on pH from 7.0 to 9.0 and temperature from 5-40 degrees C. Assays with metal ions showed that Ca(2+) is an activator, whereas Zn(2+) and Hg(2+) inhibited about 50 and 80% of its activity, respectively. The edema evidenced the important role of the toxin in the inflammatory activity of the venom. BthMP also caused unclotting, and provoked histological alterations in the gastrocnemius muscle of mice inducing hemorrhage, necrosis and leukocytic infiltrate. The molecular mass and the inhibition assays suggest that the metal loproteinase BthMP belongs to class P-I of SVMPs. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr = 61,000 under reducing conditions and pI similar to 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated scrine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca2+ and Mg2+). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against I I venom samples of Bothrops, I of Crotalus, and I of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDfNEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A(2) (PLA(2)S) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing M-r similar to 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2S from snake venoms, MTX-I belonging to Asp49 PLA(2) class, enzymatically active, and MTX-II to Lys49 PLA(2)S, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA(2) and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA(2)S induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA(2) proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
L-Amino acid oxidases (LAAOs, EC 1.4.3.2) are flavoenzymes that catalyze the stereospecific oxidative deamination of an L-amino acid substrate to the corresponding a-ketoacid with hydrogen peroxide and ammonia production. The present work describes the first report on the antiviral (Dengue virus) and antiprotozoal (trypanocidal and leishmanicide) activities of a Bothrops jararaca L-amino acid oxidase (BjarLAAO-I) and identify its cDNA sequence. Antiparasite effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Cells infected with DENV-3 virus previously treated with BjarLAAO-I, showed a decrease in viral titer (13-83-fold) when compared with cells infected with untreated viruses. Untreated and treated promastigotes (T. cruzi and L. amazonensis) were observed by transmission electron microscopy with different degrees of damage. Its complete cDNA sequence, with 1452 bp, encoded an open reading frame of 484 amino acid residues with a theoretical molecular weight and pl of 54,771.8 and 5.7, respectively. The cDNA-deduced amino acid sequence of BjarLAAO shows high identity to LAAOs from other snake venoms. Further investigations will be focused on the related molecular and functional correlation of these enzymes. Such a study should provide valuable information for the therapeutic development of new generations of microbicidal drugs. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The aqueous extract prepared from Schizolobium parahyba (Sp) leaves, a native plant from Atlantic Forest (Brazil), was tested to analyse its ability to inhibit some biological and enzymatic activities induced by Bothrops alternatus (BaltCV) and Bothrops moojeni (BmooCV) snake venoms. Sp inhibited 100% of lethality, blood incoagulability, haemorrhagic and indirect haemolytic activities at a 1:10 ratio (venom/extract, w/w), as well as coagulant activity at a 1:5 ratio (venom/extract, w/w) induced by both venoms. BaltCV fibrinogenolytic activity was also neutralized by Sp at a 1:10 ratio, resulting in total protection of fibrinogen B beta chain and partial protection of A alpha chain. Interaction tests have demonstrated that, at certain extract/proteins ratios, Sp precipitates proteins non-specifically suggesting the presence of tannins, which are very likely responsible for the excellent inhibiting effects of the analysed ophidian activities. Sp aqueous extract chromatography on Sephadex LH-20 was carried out aiming at the separation of these compounds that mask the obtained results. Thus, the fractionation of Sp resulted in three fractions: F1 (methanolic fraction); F2 (methanol:water fraction, 1:1 v/v); and F3 (aqueous fraction). These fractions were analysed for their ability to inhibit the BaltCV fibrinogenolytic activity. F1 inhibited 100% the venom fibrinogenolytic activity without presenting protein precipitation effect; F2 showed only partial inhibition of this venom activity. Finally, F3 did not inhibit fibrinogen proteolysis, but presented strong protein precipitating action. We conclude that Sp aqueous extract, together with tannins, also contains other compounds that can display specific inhibitory activity against snake venom toxins.
Resumo:
A proteinase, named BmooMP alpha-I, from the venom of Bothrops moojeni, was purified by DEAE-Sephacel, Sephadex G-75 and heparin-agarose column chromatography. The enzyme was purified to homogeneity as judged by its migration profile in SDS-PAGE stained with coomassie blue, and showed a molecular mass of about 24.5 kDa. Its complete cDNA was obtained by RT-PCR and the 615 bp codified for a mature protein of 205 amino acid residues. The multiple alignment of its deduced amino acid sequence and those of other snake venom metalloproteinases showed a high structural similarly, mainly among class P-IB proteases. The enzyme cleaves the A alpha-chain of fibrinogen first, followed by the B beta-chain, and shows no effects on the gamma-chain. On fibrin, the enzyme hydrolyzed only the beta-chain, leaving the gamma-dimer apparently untouched. It was devoid of phospholipase A(2), hemorrhagic and thrombin-like activities. Like many venom enzymes, it is stable at pH values between 4 and 10 and stable at 70 degrees C for 15 min. The inhibitory effects of EDTA on the fibrinogenolytic activity suggest that BmooMP alpha-I is a metalloproteinase and inhibition by beta-mercaptoethanol revealed the important role of the disulfide bonds in the stabilization of the native structure. Aprotinin and benzamidine, specific serine proteinase inhibitors, had no effect on BmooMP alpha-I activity. Since the BmooMP alpha-I enzyme was found to cause defibrinogenation when administered i.p. on mice, it is expected that it may be of medical interest as a therapeutic agent in the treatment and prevention of arterial thrombosis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A thrombin-like enzyme, named BjussuSP-I, isolated from Bothrops jararacussu snake venom, is an acidic single-chain glycoprotein with M-r = 61,000, pI similar to 3.8 and 6% sugar. BjussuSP-I shows high proteolytic activity upon synthetic substrates, such as S-2238 and S-2288. It also shows procoagulant and kallikrein-like activity, but is unable to act on platelets and plasmin. These activities are inhibited by specific inhibitors of this class of enzymes. The complete cDNA sequence of BjussuSP-I with 696 bp encodes open reading frames of 232 amino acid residues, which conserve the common domains of thrombin-like serine proteases. BjussuSP-I shows a high structural homology with other thrombin-like enzymes from snake venoms where common amino acid residues are identified as those corresponding to the catalytic site and subsites S1, S2 and S3 already reported. In this study, we also demonstrated the importance of N-linked glycans, to improve thrombin-like activity of BjussuSP-I toxin. (c) 2007 Elsevier Masson SAS. All rights reserved.