866 resultados para BIG-BANG NUCLEOSYNTHESIS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Radiative capture of nucleons at energies of astrophysical interest is one of the most important processes for nucleosynthesis. The nucleon capture can occur either by a compound nucleus reaction or by a direct process. The compound reaction cross sections are usually very small, especially for light nuclei. The direct capture proceeds either via the formation of a single-particle resonance or a non-resonant capture process. In this work we calculate radiative capture cross sections and astrophysical S-factors for nuclei in the mass region A < 20 using single-particle states. We carefully discuss the parameter fitting procedure adopted in the simplified two-body treatment of the capture process. Then we produce a detailed list of cases for which the model works well. Useful quantities, such as spectroscopic factors and asymptotic normalization coefficients, are obtained and compared to published data. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-energy nuclear collisions create an energy density similar to that of the Universe microseconds after the Big Bang(1); in both cases, matter and antimatter are formed with comparable abundance. However, the relatively short-lived expansion in nuclear collisions allows antimatter to decouple quickly from matter, and avoid annihilation. Thus, a high-energy accelerator of heavy nuclei provides an efficient means of producing and studying antimatter. The antimatter helium-4 nucleus ((4)(He) over bar), also known as the anti-alpha ((alpha) over bar), consists of two antiprotons and two antineutrons (baryon number B = -4). It has not been observed previously, although the alpha-particle was identified a century ago by Rutherford and is present in cosmic radiation at the ten per cent level(2). Antimatter nuclei with B -1 have been observed only as rare products of interactions at particle accelerators, where the rate of antinucleus production in high-energy collisions decreases by a factor of about 1,000 with each additional antinucleon(3-5). Here we report the observation of (4)<(He) over bar, the heaviest observed antinucleus to date. In total, 18 (4)(He) over bar counts were detected at the STAR experiment at the Relativistic Heavy Ion Collider (RHIC; ref. 6) in 10(9) recorded gold-on-gold (Au+Au) collisions at centre-of-mass energies of 200 GeV and 62 GeV per nucleon-nucleon pair. The yield is consistent with expectations from thermodynamic(7) and coalescent nucleosynthesis(8) models, providing an indication of the production rate of even heavier antimatter nuclei and a benchmark for possible future observations of (4)(He) over bar in cosmic radiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lithium (Li) is a chemical element with atomic number 3 and it is among the lightest known elements in the universe. In general, the Lithium is found in the nature under the form of two stable isotopes, the 6Li and 7Li. This last one is the most dominant and responds for about 93% of the Li found in the Universe. Due to its fragileness this element is largely used in the astrophysics, especially in what refers to the understanding of the physical process that has occurred since the Big Bang going through the evolution of the galaxies and stars. In the primordial nucleosynthesis in the Big Bang moment (BBN), the theoretical calculation forecasts a Li production along with all the light elements such as Deuterium and Beryllium. To the Li the BNB theory reviews a primordial abundance of Log log ǫ(Li) =2.72 dex in a logarithmic scale related to the H. The abundance of Li found on the poor metal stars, or pop II stars type, is called as being the abundance of Li primordial and is the measure as being log ǫ(Li) =2.27 dex. In the ISM (Interstellar medium), that reflects the current value, the abundance of Lithium is log ǫ(Li) = 3.2 dex. This value has great importance for our comprehension on the chemical evolution of the galaxy. The process responsible for the increasing of the primordial value present in the Li is not clearly understood until nowadays. In fact there is a real contribution of Li from the giant stars of little mass and this contribution needs to be well streamed if we want to understand our galaxy. The main objection in this logical sequence is the appearing of some giant stars with little mass of G and K spectral types which atmosphere is highly enriched with Li. Such elevated values are exactly the opposite of what could happen with the typical abundance of giant low mass stars, where convective envelops pass through a mass deepening in which all the Li should be diluted and present abundances around log ǫ(Li) ∼1.4 dex following the model of stellar evolution. In the Literature three suggestions are found that try to reconcile the values of the abundance of Li theoretical and observed in these rich in Li giants, but any of them bring conclusive answers. In the present work, we propose a qualitative study of the evolutionary state of the rich in Li stars in the literature along with the recent discovery of the first star rich in Li observed by the Kepler Satellite. The main objective of this work is to promote a solid discussion about the evolutionary state based on the characteristic obtained from the seismic analysis of the object observed by Kepler. We used evolutionary traces and simulation done with the population synthesis code TRILEGAL intending to evaluate as precisely as possible the evolutionary state of the internal structure of these groups of stars. The results indicate a very short characteristic time when compared to the evolutionary scale related to the enrichment of these stars

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Much of the published work regarding the Isotropic Singularity is performed under the assumption that the matter source for the cosmological model is a barotropic perfect fluid, or even a perfect fluid with a gamma-law equation of state. There are, however, some general properties of cosmological models which admit an Isotropic Singularity, irrespective of the matter source. In particular, we show that the Isotropic Singularity is a point-like singularity and that vacuum space-times cannot admit an Isotropic Singularity. The relationships between the Isotropic Singularity, and the energy conditions, and the Hubble parameter is explored. A review of work by the authors, regarding the Isotropic Singularity, is presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foi Galileu quem propôs o método experimental moderno a propósito de alguns problemas da Mecânica, e foi por essa via que foram também estabelecidads as leis fundamentais do Electromagnetismo. A partir daqui a evolução das Teorias Físicas dá-se através duma relação dialética Teoria/ Prática, que levou à realização de duas experimentações fundacionais para confirmar a Gravitação de Newtou e a Relatividade Especial de Einstein. A Relatividade Geral ou Geometrodinâmica Einsteiniana suscitou por sua vez algumas das experiências mais espectaculares da Física Relativista. A interdependência da Mecânica Relativista e do Electromagnetismo tomada evidente pelas medidas de radiação EMG feitas pelos radiotelescópios de hoje, suscitou a aspiração e busca de Teorias Unitárias que abrangessem todos os fenômenos da Natureza. E foi justamente a Radioastronomia que revelou as singularidades do campo einsteiniano - o Big Bang e os Buracos Negros. A busca actual duma Teoria do Todo pela unificação de todas as forças da Natureza, as de índole electromagnética e a gravitacional, chegou porém a um impasse que suscita algumas questões de índole gnoseológica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a general class of solutions to Einstein's field equations with two spacelike commuting Killing vectors by assuming the separation of variables of the metric components. The solutions can be interpreted as inhomogeneous cosmological models. We show that the singularity structure of the solutions varies depending on the different particular choices of the parameters and metric functions. There exist solutions with a universal big-bang singularity, solutions with timelike singularities in the Weyl tensor only, solutions with singularities in both the Ricci and the Weyl tensors, and also singularity-free solutions. We prove that the singularity-free solutions have a well-defined cylindrical symmetry and that they are generalizations of other singularity-free solutions obtained recently.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Teniendo en cuenta tres casos dentro del contexto del conflicto armado donde la jurisdicción penal colombiana estudia la admisión o exclusión de medios probatorios producidos a partir de injerencias de comunicaciones, encontramos que no siempre se aplica la regla de exclusión cuando no cuentan con una orden judicial previa. Ante este problema, buscamos como se ha solucionado, teniendo como referente la el Derecho Internacional Humanitario, el Derecho Internacional de los Derechos Humanos. Lo anterior nos da base para entender la regla de exclusión de que se ha venido desarrollando dentro del Derecho Internacional Penal. Si bien estas reglas nos sirven para solucionar estos tres casos, terminan siendo contradictorios a lo que ha venido desarrollando la Corte Constitucional. De esta manera, si bien esta Corte consideró que la regla de Estatuto de Roma, va en concordancia con la nuestra regla de exclusión nacional, tal afirmación es errónea.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Examina la historia de esta ciencia considerada la más antigua de todas por el interés que desde la antigüedad ha suscitado en los hombres el conocimiento de los complejos movimientos de los objetos celestiales.También, se repasan los orígenes del universo con la violenta explosión ocurrida hace billones de años, llamada Big Bang. Se estudia el sistema solar, formado de planetas, lunas e innumerables cuerpos más pequeños como asteroides y cometas. Se completa con una observación de las estrellas y galaxias en el cielo de la noche, con cartas estelares y perfiles de constelaciones y, por último, se añade una guía con la posición mes a mes de las constelaciones septentrionales y australes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sumario: I. Todos los caminos conducen a Roma. 1.1. La dignidad. 1.2. El derecho subjetivo. 1.3. La capacidad. 1.4. La igualdad. II. Estirar los pies hasta donde alcanza la sábana. 2.1. La dignidad. 2.2. El derecho subjetivo. 2.3. La capacidad. 2.4. La igualdad. III. Caminar alegremente hacia la fuente. 3.1. La relacionalidad. 3.2. La correspondencia. 3.3. La complementariedad. 3.4. El principio de reciprocidad. IV. Del agujero negro al Big Bang. V. Reflexiones finales. VI. Bibliografía.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nuclear collisions recreate conditions in the universe microseconds after the Big Bang. Only a very small fraction of the emitted fragments are light nuclei, but these states are of fundamental interest. We report the observation of antihypertritons-comprising an antiproton, an antineutron, and an antilambda hyperon-produced by colliding gold nuclei at high energy. Our analysis yields 70 +/- 17 antihypertritons (3/Lambda(H) over bar) and 157 +/- 30 hypertritons ((3)(Lambda)H). The measured yields of (3)(Lambda)H (3/Lambda(H) over bar) and (3)He ((3)(He) over bar) are similar, suggesting an equilibrium in coordinate and momentum space populations of up, down, and strange quarks and antiquarks, unlike the pattern observed at lower collision energies. The production and properties of antinuclei, and of nuclei containing strange quarks, have implications spanning nuclear and particle physics, astrophysics, and cosmology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many astronomical observations in the last few years are strongly suggesting that the current Universe is spatially flat and dominated by an exotic form of energy. This unknown energy density accelerates the universe expansion and corresponds to around 70% of its total density being usually called Dark Energy or Quintessence. One of the candidates to dark energy is the so-called cosmological constant (Λ) which is usually interpreted as the vacuum energy density. However, in order to remove the discrepancy between the expected and observed values for the vacuum energy density some current models assume that the vacuum energy is continuously decaying due to its possible coupling with the others matter fields existing in the Cosmos. In this dissertation, starting from concepts and basis of General Relativity Theory, we study the Cosmic Microwave Background Radiation with emphasis on the anisotropies or temperature fluctuations which are one of the oldest relic of the observed Universe. The anisotropies are deduced by integrating the Boltzmann equation in order to explain qualitatively the generation and c1assification of the fluctuations. In the following we construct explicitly the angular power spectrum of anisotropies for cosmologies with cosmological constant (ΛCDM) and a decaying vacuum energy density (Λ(t)CDM). Finally, with basis on the quadrupole moment measured by the WMAP experiment, we estimate the decaying rates of the vacuum energy density in matter and in radiation for a smoothly and non-smoothly decaying vacuum

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Economia - FCLAR

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

80.00% 80.00%

Publicador:

Resumo:

After decades of successful hot big-bang paradigm, cosmology still lacks a framework in which the early inflationary phase of the universe smoothly matches the radiation epoch and evolves to the present “quasi” de Sitter spacetime. No less intriguing is that the current value of the effective vacuum energy density is vastly smaller than the value that triggered inflation. In this paper, we propose a new class of cosmologies capable of overcoming, or highly alleviating, some of these acute cosmic puzzles. Powered by a decaying vacuum energy density, the spacetime emerges from a pure nonsingular de Sitter vacuum stage, “gracefully” exits from inflation to a radiation phase followed by dark matter and vacuum regimes, and, finally, evolves to a late-time de Sitter phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ALICE, that is an experiment held at CERN using the LHC, is specialized in analyzing lead-ion collisions. ALICE will study the properties of quarkgluon plasma, a state of matter where quarks and gluons, under conditions of very high temperatures and densities, are no longer confined inside hadrons. Such a state of matter probably existed just after the Big Bang, before particles such as protons and neutrons were formed. The SDD detector, one of the ALICE subdetectors, is part of the ITS that is composed by 6 cylindrical layers with the innermost one attached to the beam pipe. The ITS tracks and identifies particles near the interaction point, it also aligns the tracks of the articles detected by more external detectors. The two ITS middle layers contain the whole 260 SDD detectors. A multichannel readout board, called CARLOSrx, receives at the same time the data coming from 12 SDD detectors. In total there are 24 CARLOSrx boards needed to read data coming from all the SDD modules (detector plus front end electronics). CARLOSrx packs data coming from the front end electronics through optical link connections, it stores them in a large data FIFO and then it sends them to the DAQ system. Each CARLOSrx is composed by two boards. One is called CARLOSrx data, that reads data coming from the SDD detectors and configures the FEE; the other one is called CARLOSrx clock, that sends the clock signal to all the FEE. This thesis contains a description of the hardware design and firmware features of both CARLOSrx data and CARLOSrx clock boards, which deal with all the SDD readout chain. A description of the software tools necessary to test and configure the front end electronics will be presented at the end of the thesis.