983 resultados para BG
Resumo:
The single crystal Raman spectra of natural mineral paulmooreite Pb2As2O5 from the Långban locality, Filipstad district, Värmland province, Sweden are presented for the first time. It is a monoclinic mineral containing an isolated [As2O5]4-. Depolarised and single crystal spectra of the natural and synthetic sample compare favorably and are characterized by strong bands around 186 and 140 cm-1 and three medium bands at 800 – 700 cm-1. Band assignments were made based on band symmetry and spectral comparison between experimental band positions and those resulting from Hartree-Fock calculation of an isolated [As2O5]4- ion. Spectral comparison was also made with lead arsenites such as synthetic PbAs2O4 and Pb2(AsO2)3Cl and natural finnemanite in order to determine the contribution of the terminal and bridging O in paulmooreite. Bands at 760 – 733 cm-1 were assigned to terminal As-O vibrations, whereas stretches of the bridging O occur at 562 and 503 cm-1. The single crystal spectra showed good mode separation, allowing bands to be assigned a symmetry species of Ag or Bg.
Resumo:
Bone defects, especially large bone defects, remain a major challenge in orthopaedic surgery. Autologous bone transplantation is considered the most effective treatment, but insufficient donor tissue, coupled with concerns about donor site morbidity, has hindered this approach in large-scale applications. Alternative approaches include implanting biomaterials such as bioactive glass (BG), which has been widely used for bone defect healing, due to having generally good biocompatibility, and can be gradually biodegraded during the process of new bone formation. Mesoporous bioactive glass (MBG) is a newly developed bioactive glass which has been proven to have enhanced in-vitro bioactivity; however the in-vivo osteogenesis has not been studied. A critical problem in using the bone tissue engineering approach to restore large bone defects is that the nutrient supply and cell viability at the centre of the scaffold is severely hampered since the diffusion distance of nutrients and oxygen for cell survival is limited to 150-200µm. Cobalt ions has been shown to mimic hypoxia, which plays a pivotal role in coupling angiogenesis with osteogenesis in-vivo by activating hypoxia inducing factor-1α (HIF-1α) transcription factor, subsequently initiating the expression of genes associated with tissue regeneration. Therefore, one aim of this study is to investigate the in-vivo osteogenesis of MBG by comparison with BG and β-TCP, which are widely used clinically. The other aim is to explore hypoxia-mimicking biomaterials by incorporating Cobalt into MBG and β-TCP. MBG and β-TCP incorporated with 5% cobalt (5Co-MBG and 5CCP) have also been studied in-vivo to determine whether the hypoxic effect has a beneficial effect on the bone formation. The composition and microstructure of synthesised materials (BG, MBG, 5Co-MBG, 5CCP) were characterised, along with the mesopore properties of the MBG materials. Dissolution and cytotoxicity of the Co-containing materials were also investigated. Femoral samples with defects harvested at 4 and 8 weeks were scanned using micro-CT followed by processing for histology (H&E staining) to determine bone formation. Histology of MBG showed a slower rate of bone formation at 4 weeks than BG, however at 8 weeks it could be clearly seen that MBG had more bone formation. The in-vivo results show that the osteogenesis of MBG reciprocates the enhanced performance shown in-vitro compared to BG. Dissolution study showed that Co ions can be efficiently released from MBG and β-TCP in a controllable way. Low amounts of Co incorporated into the MBG and β-TCP showed no significant cytotoxicity and the Co-MBG powders maintained a mesopore structure although not as highly ordered as pure MBG. Preliminary study has shown that Co incorporated samples showed little to no bone formation, instead incurring high lymphocyte activity. Further studies need to be done on Co incorporated materials to determine the cause for high lymphocyte activity in-vivo, which appear to hinder bone formation. In conclusion, this study demonstrated the osteogenic activity of MBG and provided some valuable information of tissue reaction to Co-incorporated MBG and TCP materials.
Resumo:
The mineral creedite is a fluorinated hydroxy hydrated sulphate of aluminium and calcium of formula Ca3Al2SO4(F,OH)·2H2O. The mineral has been studied by a combination of electron probe analysis to determine the molecular formula of the mineral and the structure assessed by vibrational spectroscopy. The spectroscopy of creedite may be compared with that of the alums. The Raman spectrum of creedite is characterised by an intense sharp band at 986 cm−1 assigned to the View the MathML source ν1 (Ag) symmetric stretching mode. Multiple bands of creedite in the antisymmetric stretching region support the concept of a reduction in symmetry of the sulphate anion. Multiple bands are also observed in the bending region with the three bands at 601, 629 and 663 cm−1 assigned to the View the MathML source ν4 (Ag) bending modes. The observation of multiple bands at 440, 457 and 483 cm−1 attributed to the View the MathML source ν2 (Bg) bending modes supports the concept that the symmetry of the sulphate is reduced by coordination to the water bonded to the Al3+ in the creedite structure. The splitting of the ν2, ν3 and ν4 modes is attributed to the reduction of symmetry of the SO4 and it is proposed that the sulphate coordinates to water in the hydrated aluminium in bidentate chelation.
Resumo:
Here we fabricate and characterise bioactive composite scaffolds for bone tissue engineering applications. 45S5 Bioglass® (45S5) or strontium-substituted bioactive glass (SrBG) were incorporated into polycaprolactone (PCL) and fabricated into 3D bioactive composite scaffolds utilising additive manufacturing technology. We show that composite scaffolds (PCL/45S5 and PCL/SrBG) can be reproducibly manufactured with a scaffold morphology highly resembling that of PCL scaffolds. Additionally, micro-CT analysis reveals BG particles were homogeneously distributed throughout the scaffolds. Mechanical data suggested that PCL/45S5 and PCL/SrBG composite scaffolds have higher compressive Young’s modulus compared to PCL scaffolds at similar porosity (~75%). After 1 day in accelerated degradation conditions using 5M NaOH, PCL/SrBG, PCL/45S5 and PCL lost 48.6 ±3.8%, 12.1 ±1% and 1.6 ±1% of its original mass, respectively. In vitro studies were conducted using MC3T3 cells under normal and osteogenic conditions. All scaffolds were shown to be non-cytotoxic, and supported cell attachment and proliferation. Our results also indicate that the inclusion of bioactive glass (BG) promotes precipitation of calcium phosphate on the scaffold surfaces which leads to earlier cell differentiation and matrix mineralisation when compared to PCL scaffolds. However, as indicated by ALP activity, no significant difference in osteoblast differentiation was found between PCL/45S5 and PCL/SrBG scaffolds. These results suggest that PCL/45S5 and PCL/SrBG composite scaffold shows potential as a next generation bone scaffold.
Resumo:
Lithium silicophosphate glasses have been prepared by a sol-gel route over a wide range of compositions. Their structural and electrical properties have been investigated. Infrared spectroscopic studies show the presence of hydroxyl groups attached to Si and P. MAS NMR investigations provide evidence for the presence of different phosphatic units in the structure. The variations of de conductivities at 423 K and activation energies have been studied as a function of composition, and both exhibit an increasing trend with the ratio of nonbridging oxygen to bridging oxygen in the structure. Ac conductivity behavior shows that the power law exponent, s, is temperature dependent and exhibits a minimum. Relaxation behavior has been examined in detail using an electrical modulus formalism, and modulus data were fitted to Kohlraush-William-Watts stretched exponential function. A structural model has been proposed and the unusual properties exhibited by this unique system of glasses have been rationalized using this model. Ion transport in these glasses appears to be confined to unidimensional conduits defined by modified phosphate chains and interspersed with unmodified silica units.
Resumo:
We studied the microstructural evolution of multiple layers of elastically stiff films embedded in an elastically soft matrix using a phase field model. The coherent and planar film/matrix interfaces are rendered unstable by the elastic stresses due to a lattice parameter mismatch between the film and matrix phases, resulting in the break-up of the films into particles. With an increasing volume fraction of the stiff phase, the elastic interactions between neighbouring layers lead to: (i) interlayer correlations from an early stage; (ii) a longer wavelength for the maximally growing wave; and therefore (iii) a delayed break-LIP. Further, they promote a crossover in the mode of instability from a predominantly anti-symmetric (in phase) one to a symmetric (out of phase) one. We have computed a stability diagram for the most probable mode of break-up in terms of elastic modulus Mismatch and Volume fraction. We rationalize our results in terms of the initial driving force for destabilization, and corroborate our conclusions using simulations in elastically anisotropic systems.
Resumo:
There are several areas in the plywood industry where Operations Research techniques have greatly assisted in better decision-making. These have resulted in improved profits, reduction of wood losses and better utilization of resources. Realizing these, some of the plywood manufacturing firms in the developed countries have established separate Operations Research departments or divisions. In the face of limited raw-material resources, raising costs and a competitive environment, the benefits attributable to the use of these techniques are becoming more and more significant.
Resumo:
Resistivity behaviour of PbO---PbX2 (X=F,Cl) glasses has been investigated as a function of pressure at laboratory temperature. All PbO---PbX2 glasses undergo crystallization under pressure and the resistivities of crystallized samples are lower than the corresponding glasses. Transitions in PbO---PbF2 glasses exhibit a first order behaviour while transitions in PbO---PbCl2 glasses possess features of a continuous transition. The differences in the pressure behaviour of the two glass systems have been attributed to the differences in the ionic sizes of F− and Cl− ions and also to pressure induced modifications of Pb---O bonding.
Resumo:
Magnetic susceptibility studies of lead oxyhalide glasses containing high concentrations of transition metal oxides such as MnO and Fe2O3 have been performed. While they exhibit predominantly antiferromagnetic interactions, the low temperature (<100K) region is dominated by paramagnetic contributions. The behaviour in these glasses is found to be similar to that of covalent oxide glasses and is different from that of purely ionic sulphate glasses.
Resumo:
Plywood manufacture includes two fundamental stages. The first is to peel or separate logs into veneer sheets of different thicknesses. The second is to assemble veneer sheets into finished plywood products. At the first stage a decision must be made as to the number of different veneer thicknesses to be peeled and what these thicknesses should be. At the second stage, choices must be made as to how these veneers will be assembled into final products to meet certain constraints while minimizing wood loss. These decisions present a fundamental management dilemma. Costs of peeling, drying, storage, handling, etc. can be reduced by decreasing the number of veneer thicknesses peeled. However, a reduced set of thickness options may make it infeasible to produce the variety of products demanded by the market or increase wood loss by requiring less efficient selection of thicknesses for assembly. In this paper the joint problem of veneer choice and plywood construction is formulated as a nonlinear integer programming problem. A relatively simple optimal solution procedure is developed that exploits special problem structure. This procedure is examined on data from a British Columbia plywood mill. Restricted to the existing set of veneer thicknesses and plywood designs used by that mill, the procedure generated a solution that reduced wood loss by 79 percent, thereby increasing net revenue by 6.86 percent. Additional experiments were performed that examined the consequences of changing the number of veneer thicknesses used. Extensions are discussed that permit the consideration of more than one wood species.
Resumo:
Glass formation in the system PbO–PbF2 has been investigated. The structure of these glasses has been studied using X-ray diffraction. Densities, heat capacities, glass-transition and crystallization temperatures and Vicker's microhardnesses have been measured. D.c. conductivities of these glasses have also been measured as a function of temperature. A structural model has been developed which suggests the existence of [PbO2F4]-type units over the entire composition range. It is suggested that covalent linkages of the type—O—Pb—O— play a crucial role in determining the composition limits to glass formation. The structural model has been shown to be consistent with other physical properties of the glasses.
Resumo:
Electron spin resonance (ESR) of d5 ions (Fe3+ and Mn2+) has been investigated in PbO---PbF2 and PbO---PbCl2 glasses in wide ranges of composition. ESR spectra of d5 ions in these glasses exhibit significant differences which we have attributed to at least three important causes: (i) The ionic potentials of Fe3+ and Mn2+ are different. Hence Fe3+ ions tend to acquire their own environment while Mn2+ ions take up substitutional (Pb2+ ion) positions. (ii) The sizes and nephelauxetic behaviours of O2- and F- ions are similar. Thus even when there is a mixed anionic coordination, the environment of Mn2+ ions is highly symmetrical in oxyfluoride glasses. The Mn2+ spectra in oxychloride glasses are considerably different. (iii) Increase in halide ion concentration increases the ionicity of lead-ligand bonding and favours a more symmetrical environment around dopant ions in halide-rich glasses. The features in ESR spectra have been interpreted in the light of known behaviour of d5 ions in glasses and also in the context of known structural features of PbO---PbX2 glasses. Dopant ions appear to cluster at high concentrations although isolated low-symmetry sites are still observed. Effects of crystallization and annealing upon ESR spectra have also been investigated.
Resumo:
Abstaract is not available.
Resumo:
Abstract: Although mainly grown for its sweet flavoured fruit, papaya (Carica papaya) has also been used for pharmacological purposes for many years. The reasons for use are varied with one of the best known being its anti-fungal action. Benzyl isothiocyanate (BITC) is the constituent most often implicated in this activity. Isothiocyanates are formed when the enzyme myrosinase catalyses the hydrolysis of the non-bioactive glucosinolates. This occurs when cellular contents come into contact through chewing, cutting or during extraction processes in the laboratory. While this is common in Brassica vegetables, the glucosinolate-myrosinase system is rare in fruit, papaya being a notable exception. It contains benzyl glucosinolate (BG), the glucosinolate precursor of BITC, in significant quantities. Parameters that determine the amount of BITC formed are duration of hydrolysis, presence/absence of nitrile-specifier proteins and BG content of different cultivars and tissues. We experimented with differing BITC extraction solvents, with the intention of developing a low cost, natural anti-fungal extract based on under-utilised papaya tissues. The findings suggest that papaya seeds, particularly from quarter-ripe fruit, have the potential to produce the highest levels of BITC necessary. Furthermore, they compare well with the nitrile-specifier protein-containing garden cress seeds (Lepidium sativum). To utilise the papaya seeds as a BITC source, an organic solvent such as ethanol is required to extract the largely water-insoluble BITC from the hydrolysed papaya seed mixture.
Resumo:
Two variants of a simplified procedure for the isolation of plasma membrane fractions from monkey and rat brains, are described. The preparations show marked enrichments in the marker enzymes, (Na+-K+) adenosine triphosphatase, acetylcholinesterase, 5′-nucleotidase and adenylate cyclase. Lipid analysis and a protein electrophoretic pattern are presented. An enzymatic check has been made to assess for contamination by other cellular organelles. The amino acid composition of brain membrane proteins show a resemblance to the reported composition of erythrocyte ghost proteins but differ from myelin proteins.