877 resultados para Automotive Coatings


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline diamond (NCD) coatings offer an excellent alternative for tribological applications, preserving most of the intrinsic mechanical properties of polycrystalline CVD diamond and adding to it an extreme surface smoothness. Silicon nitride (Si3N4) ceramics are reported to guarantee high adhesion levels to CVD microcrystalline diamond coatings, but the NCD adhesion to Si3N4 is not yet well established. Micro-abrasion tests are appropriate for evaluating the abrasive wear resistance of a given surface, but they also provide information on thin film/substrate interfacial resistance, i.e., film adhesion. In this study, a comparison is made between the behaviour of NCD films deposited by hot-filament chemical vapour deposition (HFCVD) and microwave plasma assisted chemical vapour deposition (MPCVD) techniques. Silicon nitride (Si3N4) ceramic discs were selected as substrates. The NCD depositions by HFCVD and MPCVD were carried out using H2–CH4 and H2–CH4–N2 gas mixtures, respectively. An adequate set of growth parameters was chosen for each CVD technique, resulting in NCD films having a final thickness of 5 m. A micro-abrasion tribometer was used, with 3 m diamond grit as the abrasive slurry element. Experiments were carried out at a constant rotational speed (80 r.p.m.) and by varying the applied load in the range of 0.25–0.75 N. The wear rate for MPCVD NCD (3.7±0.8 × 10−5 m3N−1m−1) is compatible with those reported for microcrystalline CVD diamond. The HFCVD films displayed poorer adhesion to the Si3N4 ceramic substrates than the MPCVD ones. However, the HFCVD films show better wear resistance as a result of their higher crystallinity according to the UV Raman data, despite evidencing premature adhesion failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ball rotating micro-abrasion tribometers are commonly used to carry out wear tests on thin hard coatings. In these tests, different kinds of abrasives were used, as alumina (Al2O3), silicon carbide (SiC) or diamond. In each kind of abrasive, several particle sizes can be used. Some studies were developed in order to evaluate the influence of the abrasive particle shape in the micro-abrasion process. Nevertheless, the particle size was not well correlated with the material removed amount and wear mechanisms. In this work, slurry of SiC abrasive in distilled water was used, with three different particles size. Initial surface topography was accessed by atomic force microscopy (AFM). Coating hardness measurements were performed with a micro-hardness tester. In order to evaluate the wear behaviour, a TiAlSiN thin hard film was used. The micro-abrasion tests were carried out with some different durations. The abrasive effect of the SiC particles was observed by scanning electron microscopy (SEM) both in the films (hard material) as in the substrate (soft material), after coating perforation. Wear grooves and removed material rate were compared and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The injection process of glass fibres reinforced plastics promotes the moulds surface degradation by erosion. In order to improve its wear resistance, several kinds of PVD thin hard coatings were used. It is well-known that nanostructures present a better compromise between hardness and toughness. Indeed, when the coating is constituted by a large number of ultra-thin different layers, cracks and interface troubles tend to decrease. However, it is not clear that these nanostructures present a better wear behaviour in erosion processes. In order to study its wear behaviour, a sputtered PVD nanostructured TiAlCrSiN coating was used. The substrate and film surfaces topography were analyzed by profilometry and atomic force microscopy techniques. Film adhesion to the substrate was evaluated by scratch tests. The surface hardness was measured with a Vickers micro-hardness tester. The wear resistance was evaluated by micro-abrasion with a rotating ball tribometer tests. Slurry of SiC particles in distilled water was used in order to provoke the surface abrasion. Different duration tests were performed in order to analyze the wear evolution. After these tests, the wear mechanisms developed were analyzed by scanning electron microscopy. Wear craters were measured and the wear rate was calculated and discussed. With the same purpose, coated inserts were mounted in an injection mould working with a 30% glass fibres reinforced polypropylene. After 45 000 cycles no relevant wear was registered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para a obtenção de grau de doutor em Ciências da Engenharia e Tecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasingly stringed regulations for diesel engine emissions have a significant impact on the required efficiency of DOC. Lowered DOC oxidation efficiency due to thermal aging effects influences the efficiency of the exhaust aftertreatment systems downstream of the DOC. In this work carried out in the Jean Le Rond d’Alembert Institute the effect of hydrothermal aging on the reactivity and structure of a commercial DOC was investigated. The characterization of the catalytic performance was carried out on a synthetic gas bench using carrots catalyst under conditions close to the realistic conditions i.e. using a synthetic gas mixture, representative of the exhaust gases from diesel engines. Different structural characterization techniques were performed: textural and morphological proprieties were analyzed by BET and TEM, the characterization of the presented crystallographic phases was performed by DRX and the determination of the number of reducible species was possible by TPR. TEM results shown, an increase of the metal particle size with the aging caused by the agglomeration of metal particles, revealing the presence of metal sintering. DRX results also suggest the presence of support sintering. Furthermore, DRX and BET results unexpectedly reveal that the most drastic aging conditions used actually activated the catalyst surface. As expected, the aging affected negatively the catalyst performance on the oxidation of methane and CO, however an improvement of the NO oxidation performance with the aging was observed. Nevertheless, for the aging conditions used, catalytic activity results show that the influence of aging in DOC performance was not significant, and therefore, more drastic aging conditions must be used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this paper is to conduct a methodical drawback analysis of a financial supplier risk management approach which is currently implemented in the automotive industry. Based on identified methodical flaws, the risk assessment model is further developed by introducing a malus system which incorporates hidden risks into the model and by revising the derivation of the most central risk measure in the current model. Both methodical changes lead to significant enhancements in terms of risk assessment accuracy, supplier identification and workload efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how the brain works will require tools capable of measuring neuron elec-trical activity at a network scale. However, considerable progress is still necessary to reliably increase the number of neurons that are recorded and identified simultaneously with existing mi-croelectrode arrays. This project aims to evaluate how different materials can modify the effi-ciency of signal transfer from the neural tissue to the electrode. Therefore, various coating materials (gold, PEDOT, tungsten oxide and carbon nano-tubes) are characterized in terms of their underlying electrochemical processes and recording ef-ficacy. Iridium electrodes (177-706 μm2) are coated using galvanostatic deposition under different charge densities. By performing electrochemical impedance spectroscopy in phosphate buffered saline it is determined that the impedance modulus at 1 kHz depends on the coating material and decreased up to a maximum of two orders of magnitude for PEDOT (from 1 MΩ to 25 kΩ). The electrodes are furthermore characterized by cyclic voltammetry showing that charge storage capacity is im-proved by one order of magnitude reaching a maximum of 84.1 mC/cm2 for the PEDOT: gold nanoparticles composite (38 times the capacity of the pristine). Neural recording of spontaneous activity within the cortex was performed in anesthetized rodents to evaluate electrode coating performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the role of the polymeric binder on the properties and performance of an intumescent coating. Waterborne resins of different types (vinylic, acrylic, and styrene-acrylic) were incorporated in an intumescent paint formulation, and characterized extensively in terms of thermal degradation behavior, intumescence thickness, and thermal insulation. Thermal microscopy images of charred foam development provided further information on the particular performance of each type of coating upon heating. The best foam expansion and heat protection results were obtained with the vinyl binders. Rheological measurements showed a complex evolution of the viscoelastic characteristics of the materials with temperature. As an example, the vinyl binders unexpectedly hardened significantly after thermal degradation. The values of storage moduli obtained at the onset of foam blowing (melamine decomposition) were used to explain different intumescence expansion behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Propriedades e Tecnologias de Polímeros

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exterior body panel solution containing a polydicyclopentadiene skin attached to an interior metallic reinforcement through adhesive bonding is being studied to be applied in the MobiCar bonnet. With this solution is expected to achieve lightness, adequate structural integrity and cost-efficiency. However, there is uncertainty regarding to the bonnet adhesiveness since different metallic materials and adhesive types are being considered for its development. Thus, in this paper, several samples are tested through shear loading with the aim of understanding the loading magnitude expected by using polydicyclopentadiene, steel DC04+ZE and aluminum alloy AW5754-H111 as substrates adhesively bonded by an epoxy or a methacrylate. Methacrylate adhesive have shown greater shear strength in all types of adhesive joints. PDCPD joints presented the highest displacements. Surface degradation was considered adequate over abrading once none strength difference was seen between the different surface treatments. Steel treated by cataphoresis has shown the highest joint interface strength.