912 resultados para Asymptotic normality of sums
Resumo:
in this paper we investigate the moment asymptotic stability for the nonlinear stochastic hybrid delay systems. Sufficient criteria on the stabilization and robust stability are also established for linear stochastic hybrid delay systems. Copyright © 2005 IFAC.
Resumo:
For some species, hereditary factors have great effects on their population evolution, which can be described by the well-known Volterra model. A model developed is investigated in this article, considering the seasonal variation of the environment, where the diffusive effect of the population is also considered. The main approaches employed here are the upper-lower solution method and the monotone iteration technique. The results show that whether the species dies out or not depends on the relations among the birth rate, the death rate, the competition rate, the diffusivity and the hereditary effects. The evolution of the population may show asymptotic periodicity, provided a certain condition is satisfied for the above factors. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Mishuris, G; Kuhn, G., (2001) 'Asymptotic behaviour of the elastic solution near the tip of a crack situated at a nonideal interface', Zeitschrift f?r Angewandte Mathematik und Mechanik 81(12) pp.811-826 RAE2008
Resumo:
Here a self-consistent continuum model is presented for a narrow gap plane-parallel dc glow discharge. The set of governing equations consisting of continuity and momentum equations for positive ions, fast (emitted by the cathode) and slow electrons (generated by fast electron impact ionization) coupled with Poisson's equation is treated by the technique of matched asymptotic expansions. Explicit results are obtained in the asymptotic limit: (chi delta) much less than 1, where chi = e Phi(a)/kT, delta = (r(D)/L)(2) (Phi(a) is the applied voltage, r(D) is the Debye radius) and pL much greater than 1(Hg mm cm), where p is the gas pressure and L is the gap length. In the case of high pressure, the electron energy relaxation length is much smaller than the gap length, and so the local field approximation is valid. The discharge space divides naturally into a cathode fall sheath, a quasineutral plasma region, and an anode fall sheath. The electric potential distribution obtained for each region in a (semi)analytical form is asymptotically matched to the adjoining regions in the region of overlap. The effects of the gas pressure, gap length, and applied voltage on the length of each region are investigated. (C) 2000 American Institute of Physics. [S1070-664X(00)01302-1].
Resumo:
We investigate the spreading of 4He droplets on alkali-metal surfaces at zero temperature, within the frame of finite range density-functional theory. The equilibrium configurations of several 4HeN clusters and their asymptotic trend with increasing particle number N, which can be traced to the wetting behavior of the quantum fluid, are examined for nanoscopic droplets. We discuss the size effects inferring that the asymptotic properties of large droplets correspond to those of the prewetting film.
Resumo:
If X is a stable process of index α∈(0, 2) whose Lévy measure has density cx−α−1 on (0, ∞), and S1=sup0
Resumo:
A generalized asymptotic expansion in the far field for the problem of cylindrical wave reflection at a homogeneous impedance plane is derived. The expansion is shown to be uniformly valid over all angles of incidence and values of surface impedance, including the limiting cases of zero and infinite impedance. The technique used is a rigorous application of the modified steepest descent method of Ot
Resumo:
Asymptotic 'soliton train' solutions of integrable wave equations described by inverse scattering transform method with second-order scalar eigenvalue problem are considered. It is shown that if asymptotic solution can be presented as a modulated one-phase nonlinear periodic wavetrain, then the corresponding Baker-Akhiezer function transforms into quasiclassical eigenfunction of the linear spectral problem in weak dispersion limit for initially smooth pulses. In this quasiclassical limit the corresponding eigenvalues can be calculated with the use of the Bohr Sommerfeld quantization rule. The asymptotic distributions of solitons parameters obtained in this way specify the solution of the Whitham equations. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
The aim of this paper is to study finite temperature effects in effective quantum electrodynamics using Weisskopf's zero-point energy method in the context of thermo, field dynamics. After a general calculation for a weak magnetic field at fixed T, the asymptotic behavior of the Euler-Kockel-Heisenberg Lagrangian density is investigated focusing on the regularization requirements in the high temperature limit. In scalar QED the same problem is also discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)