947 resultados para Asymptotic Formulas
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt"
Resumo:
BACKGROUND: Estimated glomerular filtration rate (eGFR) is an important diagnostic instrument in clinical practice. The National Kidney Foundation-Kidney Disease Quality Initiative (NKF-KDOQI) guidelines do not recommend using formulas developed for adults to estimate GFR in children; however, studies confirming these recommendations are scarce. The aim of our study was to evaluate the accuracy of the new Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula, the Modification of Diet in Renal Disease (MDRD) formula, and the Cockcroft-Gault formula in children with various stages of chronic kidney disease (CKD). METHODS: A total of 550 inulin clearance (iGFR) measurements for 391 children were analyzed. The cohort was divided into three groups: group 1, with iGFR >90 ml/min/1.73 m(2); group 2, with iGFR between 60 and 90 ml/min/1.73 m(2); group 3, with iGFR of <60 ml/min/1.73 m(2). RESULTS: All formulas overestimate iGFR with a significant bias (p < 0.001), present poor accuracies, and have poor Spearman correlations. For an accuracy of 10 %, only 11, 6, and 27 % of the eGFRs are accurate when using the MDRD, CKD-EPI, and Cockcroft-Gault formulas, respectively. For an accuracy of 30 %, these formulas do not reach the NKF-KDOQI guidelines for validation, with only 25, 20, and 70 % of the eGFRs, respectively, being accurate. CONCLUSIONS: Based on our results, the performances of all of these formulas are unreliable for eGFR in children across all CKD stages and cannot therefore be applied in the pediatric population group.
Resumo:
The sensitivity of parameters that govern the stability of population size in Chrysomya albiceps and describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density-dependent model of population growth. Our simulations show that variation in fecundity and mainly in survival has marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations. C. albiceps exhibits a two-point limit cycle, but the introduction of diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point dynamics. Population dynamics of C. albiceps is here compared to dynamics of Cochliomyia macellaria, C. megacephala and C. putoria.
Resumo:
We give Chebyshev-type quadrature formulas for certain new weight classes. These formulas are of highest possible degree when the number of nodes is a power of 2. We also describe the nodes in a constructive way, which is important for applications. One of our motivations to consider these type of problems is the Faraday cage phenomenon for discrete charges as discussed by J. Korevaar and his colleagues.
Resumo:
Compact expressions, complete through second order in electrical and/or mechanical anharmonicity, are given for the dynamic dipole vibrational polarizability and dynamic first and second vibrational hyperpolarizabilities. Certain contributions not previously formulated are now included
Resumo:
We examine a multiple-access communication system in which multiuser detection is performed without knowledge of the number of active interferers. Using a statistical-physics approach, we compute the single-user channel capacity and spectral efficiency in the large-system limit.
Resumo:
We show that a simple mixing idea allows one to establish a number of explicit formulas for ruin probabilities and related quantities in collective risk models with dependence among claim sizes and among claim inter-occurrence times. Examples include compound Poisson risk models with completely monotone marginal claim size distributions that are dependent according to Archimedean survival copulas as well as renewal risk models with dependent inter-occurrence times.
Resumo:
Standard methods for the analysis of linear latent variable models oftenrely on the assumption that the vector of observed variables is normallydistributed. This normality assumption (NA) plays a crucial role inassessingoptimality of estimates, in computing standard errors, and in designinganasymptotic chi-square goodness-of-fit test. The asymptotic validity of NAinferences when the data deviates from normality has been calledasymptoticrobustness. In the present paper we extend previous work on asymptoticrobustnessto a general context of multi-sample analysis of linear latent variablemodels,with a latent component of the model allowed to be fixed across(hypothetical)sample replications, and with the asymptotic covariance matrix of thesamplemoments not necessarily finite. We will show that, under certainconditions,the matrix $\Gamma$ of asymptotic variances of the analyzed samplemomentscan be substituted by a matrix $\Omega$ that is a function only of thecross-product moments of the observed variables. The main advantage of thisis thatinferences based on $\Omega$ are readily available in standard softwareforcovariance structure analysis, and do not require to compute samplefourth-order moments. An illustration with simulated data in the context ofregressionwith errors in variables will be presented.
Resumo:
It is proved the algebraic equality between Jennrich's (1970) asymptotic$X^2$ test for equality of correlation matrices, and a Wald test statisticderived from Neudecker and Wesselman's (1990) expression of theasymptoticvariance matrix of the sample correlation matrix.
Resumo:
Structural equation models are widely used in economic, socialand behavioral studies to analyze linear interrelationships amongvariables, some of which may be unobservable or subject to measurementerror. Alternative estimation methods that exploit different distributionalassumptions are now available. The present paper deals with issues ofasymptotic statistical inferences, such as the evaluation of standarderrors of estimates and chi--square goodness--of--fit statistics,in the general context of mean and covariance structures. The emphasisis on drawing correct statistical inferences regardless of thedistribution of the data and the method of estimation employed. A(distribution--free) consistent estimate of $\Gamma$, the matrix ofasymptotic variances of the vector of sample second--order moments,will be used to compute robust standard errors and a robust chi--squaregoodness--of--fit squares. Simple modifications of the usual estimateof $\Gamma$ will also permit correct inferences in the case of multi--stage complex samples. We will also discuss the conditions under which,regardless of the distribution of the data, one can rely on the usual(non--robust) inferential statistics. Finally, a multivariate regressionmodel with errors--in--variables will be used to illustrate, by meansof simulated data, various theoretical aspects of the paper.
Resumo:
In moment structure analysis with nonnormal data, asymptotic valid inferences require the computation of a consistent (under general distributional assumptions) estimate of the matrix $\Gamma$ of asymptotic variances of sample second--order moments. Such a consistent estimate involves the fourth--order sample moments of the data. In practice, the use of fourth--order moments leads to computational burden and lack of robustness against small samples. In this paper we show that, under certain assumptions, correct asymptotic inferences can be attained when $\Gamma$ is replaced by a matrix $\Omega$ that involves only the second--order moments of the data. The present paper extends to the context of multi--sample analysis of second--order moment structures, results derived in the context of (simple--sample) covariance structure analysis (Satorra and Bentler, 1990). The results apply to a variety of estimation methods and general type of statistics. An example involving a test of equality of means under covariance restrictions illustrates theoretical aspects of the paper.
Resumo:
Consider the density of the solution $X(t,x)$ of a stochastic heat equation with small noise at a fixed $t\in [0,T]$, $x \in [0,1]$.In the paper we study the asymptotics of this density as the noise is vanishing. A kind of Taylor expansion in powers of the noiseparameter is obtained. The coefficients and the residue of the expansion are explicitly calculated.In order to obtain this result some type of exponential estimates of tail probabilities of the difference between the approximatingprocess and the limit one is proved. Also a suitable local integration by parts formula is developped.