316 resultados para Artefact


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium paeoniflorin sulfonate 2 was isolated from processed, but not unprocessed, Paeonia lactiflora roots and characterized by mass spectrometry and NMR spectroscopy. A notable and characteristic downfield shift in the H-1 NMR was observed for the hydrogens to the alkoxysulfonate moiety in 2 and in other model compounds. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paeoniflorin is one of the bioactive ingredients of the roots of Paeonia lactiflora (Paeoniaceae). A comparative study of processed and non-processed commercial samples of dried roots of P. lactiflora indicated a very low level of paeoniflorin in the processed sample and the formation of a new more polar component, sodium paeoniflorin sulphonate, during treatment of the roots with sulphiting agents. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As optical coherence tomography (OCT) becomes widespread, validation and characterization of systems becomes important. Reference standards are required to qualitatively and quantitatively measure the performance between difference systems. This would allow the performance degradation of the system over time to be monitored. In this report, the properties of the femtosecond inscribed structures from three different systems for making suitable OCT characterization artefacts (phantoms) are analyzed. The parameter test samples are directly inscribed inside transparent materials. The structures are characterized using an optical microscope and a swept-source OCT. The high reproducibility of the inscribed structures shows high potential for producing multi-modality OCT calibration and characterization phantoms. Such that a single artefact can be used to characterize multiple performance parameters such the resolution, linearity, distortion, and imaging depths. © 2012 SPIE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Computed Tomography (CT) is one of the standard diagnostic imaging modalities for the evaluation of a patient’s medical condition. In comparison to other imaging modalities such as Magnetic Resonance Imaging (MRI), CT is a fast acquisition imaging device with higher spatial resolution and higher contrast-to-noise ratio (CNR) for bony structures. CT images are presented through a gray scale of independent values in Hounsfield units (HU). High HU-valued materials represent higher density. High density materials, such as metal, tend to erroneously increase the HU values around it due to reconstruction software limitations. This problem of increased HU values due to metal presence is referred to as metal artefacts. Hip prostheses, dental fillings, aneurysm clips, and spinal clips are a few examples of metal objects that are of clinical relevance. These implants create artefacts such as beam hardening and photon starvation that distort CT images and degrade image quality. This is of great significance because the distortions may cause improper evaluation of images and inaccurate dose calculation in the treatment planning system. Different algorithms are being developed to reduce these artefacts for better image quality for both diagnostic and therapeutic purposes. However, very limited information is available about the effect of artefact correction on dose calculation accuracy. This research study evaluates the dosimetric effect of metal artefact reduction algorithms on severe artefacts on CT images. This study uses Gemstone Spectral Imaging (GSI)-based MAR algorithm, projection-based Metal Artefact Reduction (MAR) algorithm, and the Dual-Energy method.

Materials and Methods: The Gemstone Spectral Imaging (GSI)-based and SMART Metal Artefact Reduction (MAR) algorithms are metal artefact reduction protocols embedded in two different CT scanner models by General Electric (GE), and the Dual-Energy Imaging Method was developed at Duke University. All three approaches were applied in this research for dosimetric evaluation on CT images with severe metal artefacts. The first part of the research used a water phantom with four iodine syringes. Two sets of plans, multi-arc plans and single-arc plans, using the Volumetric Modulated Arc therapy (VMAT) technique were designed to avoid or minimize influences from high-density objects. The second part of the research used projection-based MAR Algorithm and the Dual-Energy Method. Calculated Doses (Mean, Minimum, and Maximum Doses) to the planning treatment volume (PTV) were compared and homogeneity index (HI) calculated.

Results: (1) Without the GSI-based MAR application, a percent error between mean dose and the absolute dose ranging from 3.4-5.7% per fraction was observed. In contrast, the error was decreased to a range of 0.09-2.3% per fraction with the GSI-based MAR algorithm. There was a percent difference ranging from 1.7-4.2% per fraction between with and without using the GSI-based MAR algorithm. (2) A range of 0.1-3.2% difference was observed for the maximum dose values, 1.5-10.4% for minimum dose difference, and 1.4-1.7% difference on the mean doses. Homogeneity indexes (HI) ranging from 0.068-0.065 for dual-energy method and 0.063-0.141 with projection-based MAR algorithm were also calculated.

Conclusion: (1) Percent error without using the GSI-based MAR algorithm may deviate as high as 5.7%. This error invalidates the goal of Radiation Therapy to provide a more precise treatment. Thus, GSI-based MAR algorithm was desirable due to its better dose calculation accuracy. (2) Based on direct numerical observation, there was no apparent deviation between the mean doses of different techniques but deviation was evident on the maximum and minimum doses. The HI for the dual-energy method almost achieved the desirable null values. In conclusion, the Dual-Energy method gave better dose calculation accuracy to the planning treatment volume (PTV) for images with metal artefacts than with or without GE MAR Algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies are documenting positive large-scale species– people correlations (Luck, 2007; Schuldt & Assmann, 2010). The issue is scale dependent: the local association of species richness and people is in many cases a negative one (Pautasso, 2007; Pecher et al., 2010). This biogeographical pattern is thus important for conservation. If species-rich regions are also densely populated, preserving biodiversity becomes more difficult, ceteris paribus, than if species-rich regions were sparsely populated. At the same time, positive, regional species–people correlations are an opportunity for the biodiversity education of the majority of the human population and underline the importance of conservation in human-modified landscapes (e.g. Sheil & Meijaard, 2010; Ward, 2010).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Practice-led or multi modal theses (describing examinable outcomes of postgraduate study which comprise the practice of dancing/choreography with an accompanying exegesis) are an emerging strength of dance scholarship; a form of enquiry that has been gaining momentum for over a decade, particularly in Australia and the United Kingdom. It has been strongly argued that, in this form of research, legitimate claims to new knowledge are embodied predominantly within the practice itself (Pakes, 2003) and that these findings are emergent, contingent and often interstitial, contained within both the material form of the practice and in the symbolic languages surrounding the form. In a recent study on ‘dancing’ theses Phillips, Stock, Vincs (2009) found that there was general agreement from academics and artists that ‘there could be more flexibility in matching written language with conceptual thought expressed in practice’. The authors discuss how the seemingly intangible nature of danced / embodied research, reliant on what Melrose (2003) terms ‘performance mastery’ by the ‘expert practitioner’ (2006, Point 4) involving ‘expert’ intuition (2006, Point 5), might be accessed, articulated and validated in terms of alternative ways of knowing through exploring an ongoing dialogue in which the danced practice develops emergent theory. They also propose ways in which the danced thesis can be ‘converted’ into the required ‘durable’ artefact which the ephemerality of live performance denies, drawing on the work of Rye’s ‘multi-view’ digital record (2003) and Stapleton’s ‘multi-voiced audio visual document’(2006, 82). Building on a two-year research project (2007-2008) Dancing Between Diversity and Consistency: Refining Assessment in Postgraduate Degrees in Dance, which examined such issues in relation to assessment in an Australian context, the three researchers have further explored issues around interdisciplinarity, cultural differences and documentation through engaging with the following questions:  How do we represent research in which understandings, meanings and findings are situated within the body of the dancer/choreographer?  Do these need a form of ‘translating’ into textual form in order to be accessed as research?  What kind of language structures can be developed to effect this translation: metaphor, allusion, symbol?  How important is contextualising the creative practice?  How do we incorporate differing cultural inflections and practices into our reading and evaluation?  What kind of layered documentation can assist in producing a ‘durable’ research artefact from a non-reproduce-able live event?