681 resultados para Antitumor
Resumo:
Efficient vaccination against infectious agents and tumors depends on specific antigen targeting to dendritic cells (DCs). We report here that biosafe coronavirus-based vaccine vectors facilitate delivery of multiple antigens and immunostimulatory cytokines to professional antigen-presenting cells in vitro and in vivo. Vaccine vectors based on heavily attenuated murine coronavirus genomes were generated to express epitopes from the lymphocytic choriomeningitis virus glycoprotein, or human Melan-A, in combination with the immunostimulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF). These vectors selectively targeted DCs in vitro and in vivo resulting in vector-mediated antigen expression and efficient maturation of DCs. Single application of only low vector doses elicited strong and long-lasting cytotoxic T-cell responses, providing protective antiviral and antitumor immunity. Furthermore, human DCs transduced with Melan-A-recombinant human coronavirus 229E efficiently activated tumor-specific CD8(+) T cells. Taken together, this novel vaccine platform is well suited to deliver antigens and immunostimulatory cytokines to DCs and to initiate and maintain protective immunity.
Resumo:
We have recently reported that the intravaginal instillation of synthetic Toll-like receptor 3 (TLR3) or TLR9 agonists after a subcutaneous vaccination against human papillomavirus E7 highly increases (~5-fold) the number of vaccine-specific CD8(+) T cells in the genital mucosa of mice, without affecting E7-specific systemic responses. Here, we show that the instillation of live attenuated Salmonella enterica serovar Typhimurium similarly, though more efficiently (~15- fold), increases both E7-specific and total CD8(+) T cells in the genital mucosa. Cancer immunotherapeutic strategies combining vaccination with local immunostimulation with live bacteria deserve further investigations.
Resumo:
BACKGROUND: The mammalian target of rapamycin (mTOR) is frequently activated in colon cancers due to mutations in the phosphatidylinositol 3-kinase (PI3K) pathway. Targeting mTOR with allosteric inhibitors of mTOR such as rapamycin reduces colon cancer progression in several experimental models. Recently, a new class of mTOR inhibitors that act as ATP-competitive inhibitors of mTOR, has been developed. The effectiveness of these drugs in colon cancer cells has however not been fully characterized. METHODS: LS174T, SW480 and DLD-1 colon cancer cell lines were treated with PP242 an ATP-competitive inhibitor of mTOR, NVP-BEZ235, a dual PI3K/mTOR inhibitor or rapamycin. Tumor cell growth, proliferation and survival were assessed by MTS assay, 5-bromo-2'-deoxyuridine (BrDU) incorporation or by quantification of DNA fragmentation respectively. In vivo, the anticancer activity of mTOR inhibitors was evaluated on nude mice bearing colon cancer xenografts. RESULTS: PP242 and NVP-BEZ235 reduced the growth, proliferation and survival of LS174T and DLD-1 colon cancer cells more efficiently than rapamycin. Similarly, PP242 and NVP-BEZ235 also decreased significantly the proliferation and survival of SW480 cells which were resistant to the effects of rapamycin. In vivo, PP242 and NVP-BEZ235 reduced the growth of xenografts generated from LS174T and SW480 cells. Finally, we also observed that the efficacy of ATP-competitive inhibitors of mTOR was enhanced by U0126, a MEK inhibitor. CONCLUSIONS: Taken together, these results show that ATP-competitive inhibitors of mTOR are effective in blocking colon cancer cell growth in vitro and in vivo and thus represent a therapeutic option in colon cancer either alone or in combination with MEK inhibitors.
Resumo:
The clinical relevance of dendritic cells (DCs) at the tumor site remains a matter of debate concerning their role in the generation of effective antitumor immunity in human cancers. We performed a comprehensive immunohistochemical analysis using a panel of DC-specific antibodies on regressing tumor lesions and sentinel lymph nodes (SLNs) in melanoma patients. Here we show in a case report involving spontaneous regression of metastatic melanoma that the accumulation of DC-Lamp+ DCs, clustered with tumor cells and lymphocytes, is associated with local expansion of antigen-specific memory effector CTLs. These findings were extended in a series of 19 melanoma-positive SLNs and demonstrated a significant correlation between the density of DC-Lamp+ DC infiltrates in SLNs with the absence of metastasis in downstream lymph nodes. This study, albeit performed in a limited series of patients, points to a pivotal role of mature DCs in the local expansion of efficient antitumor T-cell-mediated immune responses at the initial sites of metastasis and may have important implications regarding the prognosis, staging, and immunotherapy of melanoma patients.
Resumo:
There is considerable interest in the development of vaccination strategies that would elicit strong tumor-specific CTL responses in cancer patients. One strategy consists of using recombinant viruses encoding amino acid sequences corresponding to natural CTL-defined peptide from tumor Ags as immunogens. However, studies with synthetic tumor antigenic peptides have demonstrated that introduction of single amino acid substitutions may dramatically increase their immunogenicity. In this study we have used a well-defined human melanoma tumor Ag system to test the possibility of translating the immunological potency of synthetic tumor antigenic peptide analogues into recombinant vaccinia viruses carrying constructs with the appropriate nucleotide substitutions. Our results indicate that the use of a mutated minigene construct directing the expression of a modified melanoma tumor Ag leads to improved Ag recognition and, more importantly, to enhanced immunogenicity. Thus, recombinant vaccinia viruses containing mutated minigene sequences may lead to new strategies for the induction of strong tumor-specific CTL responses in cancer patients.
Resumo:
Inhibitory MHC receptors determine the reactivity and specificity of NK cells. These receptors can also regulate T cells by modulating TCR-induced effector functions such as cytotoxicity, cytokine production, and proliferation. Here we have assessed the capacity of mouse T cells expressing the inhibitory MHC class I receptor Ly49A to respond to a well-defined tumor Ag in vivo using Ly49A transgenic mice. We find that the presence of Ly49A on the vast majority of lymphocytes prevents the development of a significant Ag-specific CD8+ T cell response and, consequently, the rejection of the tumor. Despite minor alterations in the TCR repertoire of CD8+ T cells in the transgenic lines, precursors of functional tumor-specific CD8+ T cells exist but could not be activated most likely due to a lack of appropriate CD4+ T cell help. Surprisingly, all of these effects are observed in the absence of a known ligand for the Ly49A receptor as defined by its ability to regulate NK cell function. Indeed, we found that the above effects on T cells may be based on a weak interaction of Ly49A with Kb or Db class I molecules. Thus, our data demonstrate that enforced expression of a Ly49A receptor on conventional T cells prevents a specific immune response in vivo and suggest that the functions of T and NK cells are differentially sensitive to the presence of inhibitory MHC class I receptors.
Resumo:
Le cancer colorectal est la 3ème cause de décès liée au cancer dans l'Europe de l'Ouest et nécessite une prise en charge pluridisciplinaire. Les thérapies anticancéreuses récentes développées visent à inhiber les voies de signalisation cellulaires responsables de la prolifération des cellules tumorales. L'inhibition de la voie de signalisation cellulaire mTOR, est une stratégie prometteuse. En effet, mTOR est souvent suractivé dans les cellules du cancer colorectal et régule la croissance, la prolifération et la survie cellulaire. De nombreuses études récentes ont démontrés l'importance de l'activité de mTOR dans le développement du cancer colorectal et l'efficacité anti-tumorale des inhibiteurs allostériques de mTOR, telle que la rapamycine. Récemment, une nouvelle classe d'inhibiteur de mTOR, notamment PP242 et NVP-BEZ235, agissant comme inhibiteur ATP- compétitif a été développée. L'efficacité de ces inhibiteurs n'a pas été démontrée dans le contexte du cancer colorectal. Dans cette étude, nous avons comparé l'effet de PP242, un inhibiteur ATP-compétitif de mTOR et NVP-BEZ235, un inhibiteur dual de PI3K/mTOR par rapport à la rapamycine. Nous avons étudié, in vitro, leur effet sur la croissance, la prolifération et la survie cellulaire sur des lignées cellulaires du cancer du colon (LS174, SW480 et DLD-1) et, in vivo, sur la croissance de xénogreffes dans un modèle murin. Nous avons émis l'hypothèse que l'effet des ces nouveaux inhibiteurs seraient plus importants qu'avec la rapamycine. Nous avons observé que le PP242 et le NVP-BEZ235 réduisent significativement et de façon plus marquée que la rapamycine la croissance, la prolifération et la survie cellulaire des cellules LS174T et DLD-1. Ces inhibiteurs réduisent également la prolifération et la survie cellulaire des cellules SW480 alors que celles-ci étaient résistantes à la rapamycine. Nous avons également observé que les inhibiteurs PP242 et NVP-BEZ235 réduisaient la croissance des xénogreffes avec les lignées cellulaires LS174 et SW480. Finalement, nous avons remarqué que l'effet anti-tumoral des inhibiteurs ATP-compétitifs de mTOR était potentialisé par l'U0126, un inhibiteur de MEK/MAPK, souvent activé dans les voies de signalisation cellulaire du cancer colorectal. En conclusion, nous avons observé que les inhibiteurs ATP-compétitifs de mTOR bloquent la croissance de cellules tumorales du cancer colorectal in vitro et in vivo. Ces résultats démontrent que ces inhibiteurs représentent une option thérapeutique prometteuse dans le traitement du cancer colorectal et méritent d'être évalués dans des études cliniques.
Resumo:
Nanoparticles with pH-sensitive behavior may enhance the success of chemotherapy in many cancers by efficient intracellular drug delivery. Here, we investigated the effect of a bioactive surfactant with pH-sensitive properties on the antitumor activity and intracellular behavior of methotrexate-loaded chitosan nanoparticles (MTX-CS-NPs). NPs were prepared using a modified ionotropic complexation process, in which was included the surfactant derived from Nα,Nε-dioctanoyl lysine with an inorganic lithium counterion. The pH-sensitive behavior of NPs allowed accelerated release of MTX in an acidic medium, as well as membrane-lytic pH-dependent activity, which facilitated the cytosolic delivery of endocytosed materials. Moreover, our results clearly proved that MTX-CSNPs were more active against the tumor HeLa and MCF-7 cell lines than the free drug. The feasibilty of using NPs to target acidic tumor extracellular pH was also shown, as cytotoxicity against cancer cells was greater in a mildly acidic environment. Finally, the combined physicochemical and pH-sensitive properties of NPs generally allowed the entrapped drug to induce greater cell cycle arrest and apoptotic effects. Therefore, our overall results suggest that pH-sensitive MTX-CS-NPs could be potentially useful as a carrier system for tumor and intracellular drug delivery in cancer therapy.
Resumo:
PURPOSE: As a first step for the development of a new cancer immunotherapy strategy, we evaluated whether antibody-mediated coating by MHC class I-related chain A (MICA) could sensitize tumor cells to lysis by natural killer (NK) cells. EXPERIMENTAL DESIGN: Recombinant MICA (rMICA) was chemically conjugated to Fab' fragments from monoclonal antibodies specific for tumor-associated antigens, such as carcinoembryonic antigen, HER2, or CD20. RESULTS: Flow cytometry analysis showed an efficient coating of MICA-negative human cancer cell lines with the Fab-rMICA conjugates. This was strictly dependent on the expression of the appropriate tumor-associated antigens in the target cells. Importantly, preincubation of the tumor cells with the appropriate Fab-rMICA conjugate resulted in NK cell-mediated tumor cell lysis. Antibody blocking of the NKG2D receptor in NK cells prevented conjugate-mediated tumor cell lysis. CONCLUSIONS: These results open the way to the development of immunotherapy strategies based on antibody-mediated targeting of MICA.
Resumo:
B7-H4 inhibits T-cell activation and is widely expressed by solid neoplasms. We have recently demonstrated that the expression of B7-H4 on the surface of malignant cells in vivo is inducible, and that novel anti-B7-H4 recombinant antibodies can reverse the inhibition of tumor-specific T cells. Thus, antibodies targeting the B7-H4 pathways may extend the survival of cancer patients by restoring T cell-mediated antitumor responses.
Resumo:
Novel alpha-mannosidase inhibitors of the type (2R,3R,4S)-2-({[(1R)-2-hydroxy-1-arylethyl]amino}methyl)pyrrolidine-3,4-diol have been prepared and assayed for their anticancer activities. Compound 30 with the aryl group=4-trifluoromethylbiphenyl inhibits the proliferation of primary cells and cell lines of different origins, irrespective of Bcl-2 expression levels, inducing a G2/Mcell cycle arrest and by modification of genes involved in cell cycle progression and survival.
Resumo:
Spontaneous CD8 T-cell responses occur in growing tumors but are usually poorly effective. Understanding the molecular and cellular mechanisms that drive these responses is of major interest as they could be exploited to generate a more efficacious antitumor immunity. As such, stimulator of IFN genes (STING), an adaptor molecule involved in cytosolic DNA sensing, is required for the induction of antitumor CD8 T responses in mouse models of cancer. Here, we find that enforced activation of STING by intratumoral injection of cyclic dinucleotide GMP-AMP (cGAMP), potently enhanced antitumor CD8 T responses leading to growth control of injected and contralateral tumors in mouse models of melanoma and colon cancer. The ability of cGAMP to trigger antitumor immunity was further enhanced by the blockade of both PD1 and CTLA4. The STING-dependent antitumor immunity, either induced spontaneously in growing tumors or induced by intratumoral cGAMP injection was dependent on type I IFNs produced in the tumor microenvironment. In response to cGAMP injection, both in the mouse melanoma model and an ex vivo model of cultured human melanoma explants, the principal source of type I IFN was not dendritic cells, but instead endothelial cells. Similarly, endothelial cells but not dendritic cells were found to be the principal source of spontaneously induced type I IFNs in growing tumors. These data identify an unexpected role of the tumor vasculature in the initiation of CD8 T-cell antitumor immunity and demonstrate that tumor endothelial cells can be targeted for immunotherapy of melanoma.
Resumo:
Several analogs of the cytotoxic thiopeptide IB-01211 or Mechercharmycin A (1) have been synthetized. The cytotoxicity of 1 and the synthetized analogs was evaluated against a panel of three human tumor cell lines. Thiopeptide 1 and the most active derivatives, 2 and 3c, were chosen for further studies like effects on cell cycle progression and induction of apoptosis. Interestingly, the inhibition of cell division and activation of a programmed cell death by apoptosis was detected.
Resumo:
The electrochemistry of 2,2-dimethyl-(3H)-3-(N-3'-nitrophenylamino)naphtho[1,2- b]furan-4,5-dione ([Q]-PhNO2), on mercury was investigated. The first peak is consistent with a quasi-reversible one-electron reduction of the ortho-quinone, forming [Q-]-PhNO2, while the second one, bielectronic, corresponds to the simultaneous reduction of the latter radical to a dianion and the nitro group to a nitro radical anion. The second order rate constant, k disp, for the decay of [Q-]-PhNO2 is 15.188 x 10³ ± 827 mol"1 L s"1 and the t1/2 equals 0.06 s. E¹7Ic values for [Q]-PhNO2 and its precursor, nor-β-lapachone, are similar. The ease of semiquinone generation and its stability are parameters statistically relevant in the correlation biochemical/theoretical aspects.