961 resultados para Anti-Mycobacterium tuberculosis activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis has emerged as a major concern in patients with immuno-mediated diseases, including psoriasis, undergoing treatment with biologicals. However, it is not known whether the chronically activated immune system of psoriasis patients interferes with their Mycobacterium tuberculosis (Mtb)-specific immunity, especially in tuberculosis-endemic areas like Brazil. We evaluated T-cell responses to a Mtb lysate and to the recombinant Mtb proteins ESAT-6 and Ag85B of tuberculin skin test (TST) positive and TST negative patients with severe or mild/moderate, untreated psoriasis in three different assays: lymphocyte proliferation, enzyme immunoassay for interferon (IFN)-gamma and interleukin (IL)-10 production by peripheral blood mononuclear cells and overnight enzyme immunospot (ELISpot) for enumerating IFN-gamma-secreting cells. In our cohort, a low proportion (29%) of the severe psoriasis patients tested were TST-positive. IFN-gamma and IL-10 secretion and T-cell proliferation to Mtb antigens were reduced in TST-negative but not in TST-positive patients with severe psoriasis when compared to healthy controls with the same TST status. Similarly, severe psoriasis patients had decreased cytokine secretion and proliferative response to phytohemagglutinin. However, most psoriasis patients and healthy controls showed detectable numbers of IFN-gamma-secreting effector-memory T-cells in response to Mtb antigens by ELISpot. TST-negative, mild/moderate psoriasis patients had responses that were mostly intermediary between TST-negative controls and severe psoriasis patients. Thus, patients with severe psoriasis possess decreased anti-Mtb central memory T-cell responses, which may lead to false-negative results in the diagnosis of TB infection, but retain T-cell memory-effector activity against Mtb antigens. We hypothesize that the latter may confer some protection against tuberculosis reactivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract The emergence of multi and extensively drug resistant tuberculosis (MDRTB and XDRTB) has increased the concern of public health authorities around the world. The World Health Organization has defined MDRTB as tuberculosis (TB) caused by organisms resistant to at least isoniazid and rifampicin, the main first-line drugs used in TB therapy, whereas XDRTB refers to TB resistant not only to isoniazid and rifampicin, but also to a fluoroquinolone and to at least one of the three injectable second-line drugs, kanamycin, amikacin and capreomycin. Resistance in Mycobacterium tuberculosis is mainly due to the occurrence of spontaneous mutations and followed by selection of mutants by subsequent treatment. However, some resistant clinical isolates do not present mutations in any genes associated with resistance to a given antibiotic, which suggests that other mechanism(s) are involved in the development of drug resistance, namely the presence of efflux pump systems that extrude the drug to the exterior of the cell, preventing access to its target. Increased efflux activity can occur in response to prolonged exposure to subinhibitory concentrations of anti-TB drugs, a situation that may result from inadequate TB therapy. The inhibition of efflux activity with a non-antibiotic inhibitor may restore activity of an antibiotic subject to efflux and thus provide a way to enhance the activity of current anti-TB drugs. The work described in this thesis foccus on the study of efflux mechanisms in the development of multidrug resistance in M. tuberculosis and how phenotypic resistance, mediated by efflux pumps, correlates with genetic resistance. In order to accomplish this goal, several experimental protocols were developed using biological models such as Escherichia coli, the fast growing mycobacteria Mycobacterium smegmatis, and Mycobacterium avium, before their application to M. tuberculosis. This approach allowed the study of the mechanisms that result in the physiological adaptation of E. coli to subinhibitory concentrations of tetracycline (Chapter II), the development of a fluorometric method that allows the detection and quantification of efflux of ethidium bromide (Chapter III), the characterization of the ethidium bromide transport in M. smegmatis (Chapter IV) and the contribution of efflux activity to macrolide resistance in Mycobacterium avium complex (Chapter V). Finally, the methods developed allowed the study of the role of efflux pumps in M. tuberculosis strains induced to isoniazid resistance (Chapter VI). By this manner, in Chapter II it was possible to observe that the physiological adaptation of E. coli to tetracycline results from an interplay between events at the genetic level and protein folding that decrease permeability of the cell envelope and increase efflux pump activity. Furthermore, Chapter III describes the development of a semi-automated fluorometric method that allowed the correlation of this efflux activity with the transport kinetics of ethidium bromide (a known efflux pump substrate) in E. coli and the identification of efflux inhibitors. Concerning M. smegmatis, we have compared the wild-type M. smegmatis mc2155 with knockout mutants for LfrA and MspA for their ability to transport ethidium bromide. The results presented in Chapter IV showed that MspA, the major porin in M. smegmatis, plays an important role in the entrance of ethidium bromide and antibiotics into the cell and that efflux via the LfrA pump is involved in low-level resistance to these compounds in M. smegmatis. Chapter V describes the study of the contribution of efflux pumps to macrolide resistance in clinical M. avium complex isolates. It was demonstrated that resistance to clarithromycin was significantly reduced in the presence of efflux inhibitors such as thioridazine, chlorpromazine and verapamil. These same inhibitors decreased efflux of ethidium bromide and increased the retention of [14C]-erythromycin in these isolates. Finaly, the methods developed with the experimental models mentioned above allowed the study of the role of efflux pumps on M. tuberculosis strains induced to isoniazid resistance. This is described in Chapter VI of this Thesis, where it is demonstrated that induced resistance to isoniazid does not involve mutations in any of the genes known to be associated with isoniazid resistance, but an efflux system that is sensitive to efflux inhibitors. These inhibitors decreased the efflux of ethidium bromide and also reduced the minimum inhibitory concentration of isoniazid in these strains. Moreover, expression analysis showed overexpression of genes that code for efflux pumps in the induced strains relatively to the non-induced parental strains. In conclusion, the work described in this thesis demonstrates that efflux pumps play an important role in the development of drug resistance, namely in mycobacteria. A strategy to overcome efflux-mediated resistance may consist on the use of compounds that inhibit efflux activity, restoring the activity of antimicrobials that are efflux pump substrates, a useful approach particularly in TB where the most effective treatment regimens are becoming uneffective due to the increase of MDRTB/XDRTB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis is responsible for over 8 million cases of tuberculosis (TB) annually. Natural products may play important roles in the chemotherapy of TB. The immunological activity of Davilla elliptica chloroform extract (DECE) was evaluated in vitro by the determination of hydrogen peroxide (H2O2), nitric oxide (NO), and tumor necrosis factor-alpha (TNF-alpha) release in peritoneal macrophages cultures. DECE was also tested for its antimycobacterial activity against M. tuberculosis using the microplate alamar blue assay. DECE (50, 150, 250 µg/ml) stimulated the production of H2O2 (from 1,79 ± 0,23 to 7,27 ± 2,54; 15,02 ± 2,86; 20,5 ± 2,1 nmols) (means ± SD), NO (from 2,64 ± 1,02 to 25,59 ± 2,29; 26,68 ± 2,41; 29,45 ± 5,87 µmols) (means ± SD) and TNF-alpha (from 2,44 ± 1,46 to 30,37 ± 8,13; 38,68 ± 1,59; 41,6 ± 0,90 units/ml) (means ± SD) in a dose-dependent manner and also showed a promising antimycobacterial activity with a minimum inhibitory concentration of 62,5 µg/ml. This plant may have therapeutic potential in the immunological and microbiological control of TB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genome of Mycobacterium tuberculosis H37Rv contains three contiguous genes (plc-a, plc-b and plc-c) which are similar to the Pseudomonas aeruginosa phospholipase C (PLC) genes. Expression of mycobacterial PLC-a and PLC-b in E. coli and M. smegmatis has been reported, whereas expression of the native proteins in M. tuberculosis H37Rv has not been demonstrated. The objective of the present study was to demonstrate that native PLC-a is expressed in M. tuberculosis H37Rv. Sera from mice immunized with recombinant PLC-a expressed in E. coli were used in immunoblots to evaluate PLC-a expression. The immune serum recognized a 49-kDa protein in immunoblots against M. tuberculosis extracts. No bands were visible in M. tuberculosis culture supernatants or extracts from M. avium, M. bovis and M. smegmatis. A 550-bp DNA fragment upstream of plc-a was cloned in the pJEM12 vector and the existence of a functional promoter was evaluated by detection of ß-galactosidase activity. ß-Galactosidase activity was detected in M. smegmatis transformed with recombinant pJEM12 grown in vitro and inside macrophages. The putative promoter was active both in vitro and in vivo, suggesting that expression is constitutive. In conclusion, expression of non-secreted native PLC-a was demonstrated in M. tuberculosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis is responsible for over 8 million cases of tuberculosis (TB) annually. Natural products may play important roles in the chemotherapy of TB. The immunological activity of Davilla elliptica chloroform extract (DECE) was evaluated in vitro by the determination of hydrogen peroxide (H2O2), nitric oxide (NO), and tumor necrosis factor-alpha (TNF-alpha) release in peritoneal macrophages cultures. DECE was also tested for its antimycobacterial activity against M. tuberculosis using the microplate alamar blue assay. DECE (50, 150, 250 µg/ml) stimulated the production of H2O2 (from 1,79 ± 0,23 to 7,27 ± 2,54; 15,02 ± 2,86; 20,5 ± 2,1 nmols) (means ± SD), NO (from 2,64 ± 1,02 to 25,59 ± 2,29; 26,68 ± 2,41; 29,45 ± 5,87 µmols) (means ± SD) and TNF-alpha (from 2,44 ± 1,46 to 30,37 ± 8,13; 38,68 ± 1,59; 41,6 ± 0,90 units/ml) (means ± SD) in a dose-dependent manner and also showed a promising antimycobacterial activity with a minimum inhibitory concentration of 62,5 µg/ml. This plant may have therapeutic potential in the immunological and microbiological control of TB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background- The evaluation of the effects of new compounds and nonconventional anti-tuberculous drugs have grown and become increas-ingly more popular in recent years. Studies have shown anti-tuberculous activity for Ruthenium complexes, including organometallic com-pounds containing phosphine ligands such as picolinic acid generating great expectations and hopes. Methods- The Representational Difference Analysis (RDA) was applied in order to gain insight about differences in expression of Mycobacte-rium tuberculosis H37Rv exposed to [Ru(dppb)(pic)(bypy)] PF6 (SCAR1) and isoniazid (INH). Total RNA was extracted from the bacillus not exposed and exposed to SCAR1 and INH separately at concentration of MIC for 12 hours at 35°C. RDA was carried out and differentially expressed products were sequenced. Results- RDA-sequencing identified, for both compounds, orthologs that encode hypothetical and predict proteins. One related cell wall syn-thesis gene, identified by RDA, and genes related to INH target as inhA, katG and ahpC had their expression confirmed and quantified by real-time PCR. The gene encoding the cell wall associated hydrolase was induced 4.627 and 1.189, inhA 0.983 and 1.027, katG 1.111 and 1.345 and ahpC 1.063 and 1.039 fold after exposure to SCAR1 and INH respectively, compared to not exposed growth. Conclusion- The RDA brings, for the first time, directions to study related genes with metabolic pathways of SCAR1. RDA and Real-Time PCR highlight the idea that one of the SCAR1 interaction, in M tuberculosis may be in the cell wall biosynthesis considering the differential expression of a cell wall hydrolase and warrants further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis (TB) is a major infectious disease caused by Mycobacterium tuberculosis (Mtb). According to the World Health Organization (WHO), about 1.8 million people die from TB and 10 million new cases are recorded each year. Recently, a new series of naphthylchalcones has been identified as inhibitors of Mtb protein tyrosine phosphatases (PTPs). In this work, 100 chalcones were designed, synthesized, and investigated for their inhibitory properties against MtbPtps. Structure-activity relationships (SAR) were developed, leading to the discovery of new potent inhibitors with IC50 values in the low-micromolar range. Kinetic studies revealed competitive inhibition and high selectivity toward the Mtb enzymes. Molecular modeling investigations were carried out with the aim of revealing the most relevant structural requirements underlying the binding affinity and selectivity of this series of inhibitors as potential anti-TB drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty-three naphthoimidazoles and six naphthoxazoles were synthesised and evaluated against susceptible and rifampicin- and isoniazid-resistant strains of Mycobacterium tuberculosis. Among all the compounds evaluated, fourteen presented MIC values in the range of 0.78 to 6.25 mu g/mL against susceptible and resistant strains of M. tuberculosis, Five structures were solved by X-ray crystallographic analysis. These substances are promising antimycobacterial prototypes. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DNA ligases are important enzymes which catalyze the joining of nicks between adjacent bases of double-stranded DNA. NAD1-dependent DNA ligases (LigA) are essential in bacteria and are absent in humans. They have therefore been identified as novel, validated and attractive drug targets. Using virtual screening against an in-house database of compounds and our recently determined crystal structure of the NAD1 binding domain of the Mycobacterium tuberculosis LigA, we have identified N1, Nn-bis-(5-deoxy-a-D-xylofuranosylated) diamines as a novel class of inhibitors for this enzyme. Assays involving M.tuberculosis LigA, T4 ligase and human DNA ligase I show that these compounds specifically inhibit LigA from M.tuberculosis. In vitro kinetic and inhibition assays demonstrate that the compounds compete with NAD1 for binding and inhibit enzyme activity with IC50 values in the mM range. Docking studies rationalize the observed specificities and show that among several glycofuranosylated diamines, bis xylofuranosylated diamines with aminoalkyl and 1, 3-phenylene carbamoyl spacers mimic the binding modes of NAD1 with the enzyme. Assays involving LigA-deficient bacterial strains show that in vivo inhibition of ligase by the compounds causes the observed antibacterial activities. They also demonstrate that the compounds exhibit in vivo specificity for LigA over ATPdependent ligase. This class of inhibitors holds out the promise of rational development of new anti-tubercular agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycobacterium tuberculosis infects more people worldwide each year than any other single organism. The Antigen 85 Complex, a family of fibronectin-binding proteins (Fbps) found in several species of mycobacteria and possibly involved in host interaction, is considered among the putative virulence factors of M. tuberculosis. These proteins are implicated in the production of trehalose dimycolate (TDM) and arabinogalactan-mycolate (AG-M), two prominent components of the mycobacterium cell wall and potent modulators of the immune system during infection. For these reasons, the principal members of the complex, FbpA and FbpB, were the focus of these studies. The genes encoding these proteins, fbpA and fbpB, were each disrupted by insertion of a kanamycin resistance cassette in a pathogenic strain of M. tuberculosis, H37Rv. Neither mutation affected growth in routine broth culture. Thin layer chromatography analysis of TDM and AG-M showed no difference in content between the parent strain H37Rv and the FbpA- and FbpB-deficient mutants grown under two different culture conditions. However, metabolic radiolabeling of the strains showed that the production of TDM (but not its precursor TMM) was delayed in the FbpA- and FbpB-deficient mutants compared to the parent H37Rv. During this same labeling period, FbpA-deficient mutant LAa1 failed to produce AG-M and in the FpbB-deficient mutant LAb1 production was decreased. In macrophage tissue culture assay, LAa1 failed to multiply when bacteria in early log phase were used to infect monolayers while LAb1 grew like the parent strain. The growth deficiency of LAa1 as well as the deficiencies in TDM and AG-M production were restored by complementing LAa1 with a functional fbpA gene. These results suggest that the FbpA and FbpB proteins are involved in synthesis of TDM (but not its precursor TMM) as well as AG-M. Other members of the complex appear to compensate for defects in synthesis caused by mutation of single genes in the complex over time. Mutation of the FbpA gene causes greater in vivo effect than mutation of the FbpB gene despite very similar deficiencies in the rate of production of mycolate containing molecules on the cell surface. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New antibiotics to combat the emerging pandemic of drug-resistant strains of Mycobacterium tuberculosis are urgently needed. We have investigated the effects on M. tuberculosis of phosphorothioate-modified antisense oligodeoxyribonucleotides (PS-ODNs) against the mRNA of glutamine synthetase, an enzyme whose export is associated with pathogenicity and with the formation of a poly-l-glutamate/glutamine cell wall structure. Treatment of virulent M. tuberculosis with 10 μM antisense PS-ODNs reduced glutamine synthetase activity and expression by 25–50% depending on whether one, two, or three different PS-ODNs were used and the PS-ODNs' specific target sites on the mRNA. Treatment with PS-ODNs of a recombinant strain of Mycobacterium smegmatis expressing M. tuberculosis glutamine synthetase selectively inhibited the recombinant enzyme but not the endogenous enzyme for which the mRNA transcript was mismatched by 2–4 nt. Treatment of M. tuberculosis with the antisense PS-ODNs also reduced the amount of poly-l-glutamate/glutamine in the cell wall by 24%. Finally, treatment with antisense PS-ODNs reduced M. tuberculosis growth by 0.7 logs (1 PS-ODN) to 1.25 logs (3 PS-ODNs) but had no effect on the growth of M. smegmatis, which does not export glutamine synthetase nor possess the poly-l-glutamate/glutamine (P-l-glx) cell wall structure. The experiments indicate that the antisense PS-ODNs enter the cytoplasm of M. tuberculosis and bind to their cognate targets. Although more potent ODN technology is needed, this study demonstrates the feasibility of using antisense ODNs in the antibiotic armamentarium against M. tuberculosis.