897 resultados para Animal studies


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite positive testing in animal studies, more than 80% of novel drug candidates fail to proof their efficacy when tested in humans. This is primarily due to the use of preclinical models that are not able to recapitulate the physiological or pathological processes in humans. Hence, one of the key challenges in the field of translational medicine is to “make the model organism mouse more human.” To get answers to questions that would be prognostic of outcomes in human medicine, the mouse's genome can be altered in order to create a more permissive host that allows the engraftment of human cell systems. It has been shown in the past that these strategies can improve our understanding of tumor immunology. However, the translational benefits of these platforms have still to be proven. In the 21st century, several research groups and consortia around the world take up the challenge to improve our understanding of how to humanize the animal's genetic code, its cells and, based on tissue engineering principles, its extracellular microenvironment, its tissues, or entire organs with the ultimate goal to foster the translation of new therapeutic strategies from bench to bedside. This article provides an overview of the state of the art of humanized models of tumor immunology and highlights future developments in the field such as the application of tissue engineering and regenerative medicine strategies to further enhance humanized murine model systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a pharmacological inhibitor of Hsp90 in cultured malarial parasite, we have previously implicated Plasmodium falciparum Hsp90 (PfHsp90) as a drug target against malaria. In this study, we have biochemically characterized PfHsp90 in terms of its ATPase activity and interaction with its inhibitor geldanamycin (GA) and evaluated its potential as a drug target in a preclinical mouse model of malaria. In addition, we have explored the potential of Hsp90 inhibitors as drugs for the treatment of Trypanosoma infection in animals. Our studies with full-length PfHsp90 showed it to have the highest ATPase activity of all known Hsp90s; its ATPase activity was 6 times higher than that of human Hsp90. Also, GA brought about more robust inhibition of PfHsp90 ATPase activity as compared with human Hsp90. Mass spectrometric analysis of PfHsp90 expressed in P. falciparum identified a site of acetylation that overlapped with Aha1 and p23 binding domain, suggesting its role in modulating Hsp90 multichaperone complex assembly. Indeed, treatment of P. falciparum cultures with a histone deacetylase inhibitor resulted in a partial dissociation of PfHsp90 complex. Furthermore, we found a well known, semisynthetic Hsp90 inhibitor, namely 17-(allylamino)-17-demethoxygeldanamycin, to be effective in attenuating parasite growth and prolonging survival in a mouse model of malaria. We also characterized GA binding to Hsp90 from another protozoan parasite, namely Trypanosoma evansi. We found 17-(allylamino)-17-demethoxygeldanamycin to potently inhibit T. evansi growth in a mouse model of trypanosomiasis. In all, our biochemical characterization, drug interaction, and animal studies supported Hsp90 as a drug target and its inhibitor as a potential drug against protozoan diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Standard or 'traditional' human insulin preparations such as regular soluble insulin and neutral protamine Hagedorn (NPH) insulin have shortcomings in terms of their pharmacokinetic and pharmacodynamic properties that limit their clinical efficacy. Structurally modified insulin molecules or insulin 'analogs' have been developed with the aim of delivering insulin replacement therapy in a more physiological manner. In the last 10 years, five insulin analog preparations have become commercially available for clinical use in patients with type 1 diabetes mellitus: three 'rapid' or fast-acting analogs (insulin lispro, aspart, and glulisine) and two long-acting analogs (insulin glargine and detemir). This review highlights the specific pharmacokinetic properties of these new insulin analog preparations and focuses on their potential clinical advantages and disadvantages when used in children and adolescents with type 1 diabetes mellitus. The fast-acting analogs specifically facilitate more flexible insulin injection timing with regard to meals and activities, whereas the long-acting analogs have a more predictable profile of action and lack a peak effect. To date, clinical trials in children and adolescents have been few in number, but the evidence available from these and from other studies carried out in adults with type 1 diabetes suggest that they offer significant benefits in terms of reduced frequency of nocturnal hypoglycemia, better postprandial blood glucose control, and improved quality of life when compared with traditional insulins. In addition, insulin detemir therapy is unique in that patients may benefit from reduced risk of excessive weight, particularly during adolescence. Evidence for sustained long-term improvements in glycosylated hemoglobin, on the other hand, is modest. Furthermore, alterations to insulin/insulin-like growth factor I receptor binding characteristics have also raised theoretical concerns that insulin analogs may have an increased mitogenic potential and risk of tumor development, although evidence from both in vitro and in vivo animal studies do not support this assertion. Long-term surveillance has been recommended and further carefully designed prospective studies are needed to evaluate the overall benefits and clinical efficacy of insulin analog therapy in children and adolescents with type 1 diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O transtorno depressivo (TD) é um fator de risco cardiovascular independente que apresenta elevada morbi-mortalidade. Recentes evidências sugerem a participação do óxido nítrico (NO), potente vasodilatador e anti-agregante plaquetário, na patogênese de doenças cardiovasculares e psiquiátricas. A síntese do NO ocorre através da conversão do aminoácido L-arginina em L-citrulina e NO, pela ação da enzima NO sintase (NOS). Esta tese aborda o papel da via L-arginina-NO em plaquetas de pacientes com TD e sua associação com a função plaquetária e estresse oxidativo. Para análise comportamental da depressão em modelo animal, foi utilizado o modelo de estresse pós-natal de separação única (SMU). Os animais foram divididos em quatro grupos para a realização do estudo: Grupo Controle Sedentário (GCS), Grupo Controle Exercício (GCE), Grupo SMU Sedentário (SMUS) e Grupo SMU Exercício (SMUE). O treinamento físico (TF) dos animais englobou 8 semanas, com duração de 30 minutos e uma velocidade de treinamento estabelecida pelo teste máximo (TE). Para o estudo em humanos, 10 pacientes com TD com score Hamilton: 201, (média de idade: 384anos), foram pareados com 10 indivíduos saudáveis (média de idade: 383anos). Os estudos em humanos e animais foram aprovados pelos Comitês de Ética: 1436 - CEP/HUPE e CEUA/047/2010, respectivamente. Foi mensurado em humanos e em animais: transporte de L-arginina, concentração GMPc, atividade das enzimas NOS e superóxido dismutase (SOD) em plaquetas e cortisol sistêmico. Experimentos realizados somente em humanos: expressão das enzimas NOS, arginase e guanilato ciclase através de Western Blotting. A agregação plaquetária foi induzida por colágeno e foi realizada análise sistêmica de proteína C-reativa, fibrinogênio e L-arginina. Para o tratamento estatístico utilizou-se três testes estatísticos para avaliar as diferenças das curvas de sobrevida: Kaplan-Meier, e os testes de Tarone-Ware e Peto-Prentice. Em humanos, houve uma redução do transporte de L-arginina, da atividade das enzimas NOS e SOD, e da concentração de GMPc em plaquetas, e nas concentrações plasmáticas de L-arginina no grupo com TD em relação ao grupo controle. Foi observado um aumento dos níveis plasmáticos de fibrinogênio no TD. Esses resultados demonstram uma inibição da via L-arginina-NO-GMPc e da enzima anti-oxidante SOD em pacientes com TD sem afetar a função plaquetária. Em relação ao TF, para o modelo animal, foram encontradas alterações iniciais quanto à distância percorrida e tempo de execução do TE entre os grupos controles e o grupos SMUs, apresentando estes últimos menores valores para o TE. Após 8 semanas de TF, verificou-se um maior influxo no transporte de L-arginina para o SMUE em comparação ao grupo SMUS. As diferenças observadas para o tempo e a distância percorrida no TE inicial entre os grupos controle e no modelo de estresse foram revertidas após as 8 semanas de TF, demonstrando o efeito benéfico do exercício físico na capacidade cardiorespiratória em modelos de depressão.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Paralysis is a debilitating condition afflicting millions of people across the globe, and is particularly deleterious to quality of life when motor function of the legs is severely impaired or completely absent. Fortunately, spinal cord stimulation has shown great potential for improving motor function after spinal cord injury and other pathological conditions. Many animal studies have shown stimulation of the neural networks in the spinal cord can improve motor ability so dramatically that the animals can even stand and step after a complete spinal cord transaction.

This thesis presents work to successfully provide a chronically implantable device for rats that greatly enhances the ability to control the site of spinal cord stimulation. This is achieved through the use of a parylene-C based microelectrode array, which enables a density of stimulation sites unattainable with conventional wire electrodes. While many microelectrode devices have been proposed in the past, the spinal cord is a particularly challenging environment due to the bending and movement it undergoes in a live animal. The developed microelectrode array is the first to have been implanted in vivo while retaining functionality for over a month. In doing so, different neural pathways can be selectively activated to facilitate standing and stepping in spinalized rats using various electrode combinations, and important differences in responses are observed.

An engineering challenge for the usability of any high density electrode array is connecting the numerous electrodes to a stimulation source. This thesis develops several technologies to address this challenge, beginning with a fully passive implant that uses one wire per electrode to connect to an external stimulation source. The number of wires passing through the body and the skin proved to be a hazard for the health of the animal, so a multiplexed implant was devised in which active electronics reduce the number of wires. Finally, a fully wireless implant was developed. As these implants are tested in vivo, encapsulation is of critical importance to retain functionality in a chronic experiment, especially for the active implants, and it was achieved without the use of costly ceramic or metallic hermetic packaging. Active implants were built that retained functionality 8 weeks after implantation, and achieved stepping in spinalized rats after just 8-10 days, which is far sooner than wire-based electrical stimulation has achieved in prior work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In fear extinction, an animal learns that a conditioned stimulus (CS) no longer predicts a noxious stimulus [unconditioned stimulus (UCS)] to which it had previously been associated, leading to inhibition of the conditioned response (CR). Extinction creates a new CS-noUCS memory trace, competing with the initial fear (CS-UCS) memory. Recall of extinction memory and, hence, CR inhibition at later CS encounters is facilitated by contextual stimuli present during extinction training. In line with theoretical predictions derived from animal studies, we show that, after extinction, a CS-evoked engagement of human ventromedial prefrontal cortex (VMPFC) and hippocampus is context dependent, being expressed in an extinction, but not a conditioning, context. Likewise, a positive correlation between VMPFC and hippocampal activity is extinction context dependent. Thus, a VMPFC-hippocampal network provides for context-dependent recall of human extinction memory, consistent with a view that hippocampus confers context dependence on VMPFC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tris(2,2'-bipyridyl)ruthenium(II) electrochemiluminescence detection in a capillary electrophoresis separation system was used for the determination of diphenhydramine. In this study, platinum disk electrode (300 mum in diameter) was used as a working electrode and the influence of applied potential and buffer conditions were investigated. Under optimal conditions: 1.2 V applied potential, pH 8.50, 15 kV separation voltage and 10 mmol l(-1) running buffer, the calibration curve of diphenhydramine was linear over the range of 4 x 10(-8) to 1 x 10(-5) Mol l(-1). This technique gave satisfactory precision, and relative standard deviations of migration times and chemiluminescence peak intensities were less than 1 and 6%, respectively. The technique was applied to animal studies for determination of diphenhydramine extracted from rabbit plasma and urine samples, and the extraction efficiency were between 92 and 98.5%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The putative 5-HT6 receptor agonist ST1936 has been shown to increase extracellular dopamine (DA) in the n.accumbens (NAc) Shell and in the medial prefrontal cortex (PFCX). These observations suggest that 5-HT6 receptors modulate DA transmission in mesolimbic and mesocortical terminal DA areas. To investigate the behavioral counterpart of this interaction I studied in rats the effect of 5-HT6 receptor blockade on cocaine stimulated overflow of DA in dialysates from the PFCX and from the NAc Shell and on cocaine i.v. selfadministration. Pretreatment with the 5-HT6 antagonist SB271046 reduced cocaine-induced increase of dialysate DA in the NAc Shell but not in the PFCX and impaired i.v. cocaine selfadministration. These suggest that 5-HT6 receptors play a role in cocaine reinforcement via their facilitatore interaction with DA projections to the NAc Shell. This 5-HT/DA interaction might provide the basis for a new pharmacotherapeutic strategy of cocaine addiction. Caffeine is one of the psychoactive substances most widely used as adulterant in illicit drugs, such as cocaine. Animal studies have demonstrated that caffeine is able to potentiate cocaine actions, although the enhancement of the cocaine reinforcing property by caffeine is less reported, and the results depend on the paradigms and experimental protocols used. In the present study I examined the ability of caffeine to enhance the motivational and rewarding properties of cocaine using the intravenous self-administration paradigm in rats. Additionally, the role of caffeine as a primer cue during extinction was evaluated. To this end, we assessed in naïve rats: 1) the ability of the combination of cocaine (0,125 mg/kg/infusion) and caffeine (0,0625 mg/kg/infusion) to maintain self-administration in fixed ratio (FR) and progressive ratio (PR) schedules of reinforcement compared with cocaine and caffeine alone; 2) the effect of caffeine in the maintenance of responding in the animals exposed to the combination of the drugs during cocaine extinction. Cocaine and the combination of cocaine and caffeine were self-administered on a FR and PR schedules of reinforcement, and the responding for the combination of the drugs was higher than cocaine alone. Caffeine was not reliably self-administered, but was able to maintain a drug-seeking behavior in rats previously exposed to cocaine plus caffeine. These findings suggest that the presence of caffeine enhances the reinforcing effects of cocaine and the motivational value of the drug. Our results highlight the role of active adulterants commonly used in illicit street drugs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release and bioactivity characterization of tubular, porous dexamethasone (Dex)-releasing polyurethane coatings designed to attenuate local inflammation at the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy and micro-computed tomography (micro-CT) showed controlled porosity and coating thickness. In vitro drug release from coatings monitored over 2 weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2014 Acta Materialia Inc.Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue-sensor interactions. Here, we present the physical, drug release and bioactivity characterization of tubular, porous dexamethasone (Dex)-releasing polyurethane coatings designed to attenuate local inflammation at the tissue-sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy and micro-computed tomography (micro-CT) showed controlled porosity and coating thickness. In vitro drug release from coatings monitored over 2 weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400-800 μM diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-N(G)-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-α which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 μM lovastatin for three days prior to addition of Tumor necrosis factor - α (TNF-α) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Substantive evidence implicates vitamin D receptor (VDR) or its natural ligand 1a,25-(OH)2 D3 in modulation of tumor growth. However, both human and animal studies indicate tissue-specificity of effect. Epidemiological studies show both inverse and direct relationships between serum 25(OH)D levels and common solid cancers. VDR ablation affects carcinogen-induced tumorigenesis in a tissue-specific manner in model systems. Better understanding of the tissue-specificity of vitamin D-dependent molecular networks may provide insight into selective growth control by the seco-steroid, 1a,25-(OH)2 D3. This commentary considers complex factors that may influence the cell- or tissue-specificity of 1a,25-(OH)2 D3/VDR growth effects, including local synthesis, metabolism and transport of vitamin D and its metabolites, vitamin D receptor (VDR) expression and ligand-interactions, 1a,25-(OH)2 D3 genomic and non-genomic actions, Ca2+ flux, kinase activation, VDR interactions with activating and inhibitory vitamin D responsive elements (VDREs) within target gene promoters, VDR coregulator recruitment and differential effects on key downstream growth regulatory genes. We highlight some differences of VDR growth control relevant to colonic, esophageal, prostate, pancreatic and other cancers and assess the potential for development of selective prevention or treatment strategies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methods: In this study we determined, for the first time, the ability of microorganisms to traverse microneedle-induced holes using two different in vitro models.

Results: When employing Silescol® membranes, the numbers of Candida albicans, Pseudomonas aeruginosa and Staphylococcus epidermidis crossing the membranes were an order of magnitude lower when the membranes were punctured by microneedles rather than a 21G hypodermic needle. Apart from the movement of C. albicans across hypodermic needle-punctured membranes, where 40.2% of the microbial load on control membranes permeated the barrier over 24 h, the numbers of permeating microorganisms was less than 5% of the original microbial load on control membranes. Experiments employing excised porcine skin and radiolabelled microorganisms showed that the numbers of microorganisms penetrating skin beyond the stratum corneum were approximately an order of magnitude greater than the numbers crossing Silescol® membranes in the corresponding experiments. Approximately 103?cfu of each microorganism adhered to hypodermic needles during insertion. The numbers of microorganisms adhering to MN arrays were an order of magnitude higher in each case.

Conclusion: We have shown here that microneedle puncture resulted in significantly less microbial penetration than did hypodermic needle puncture and that no microorganisms crossed the viable epidermis in microneedle—punctured skin, in contrast to needle-punctured skin. Given the antimicrobial properties of skin, it is, therefore, likely that application of microneedle arrays to skin in an appropriate manner would not cause either local or systemic infection in normal circumstances in immune-competent patients. In supporting widespread clinical use of microneedle-based delivery systems, appropriate animal studies are now needed to conclusively demonstrate this in vivo. Safety in patients will be enhanced by aseptic or sterile manufacture and by fabricating microneedles from self-disabling materials (e.g. dissolving or biodegradable polymers) to prevent inappropriate or accidental reuse.