987 resultados para Análise elástica bidimensional
Resumo:
Esta tese apresenta um estudo do comportamento térmico de um coletor solar acumulador e desenvolve uma metodologia para medir a sua eficiência diária. O coletor solar acumulador está instalado na face norte do prédio de Energia Solar da UFRGS e possui cerca de 26 m2. É constituído de uma massa espessa de concreto com uma superfície absorvente feita de tijolos, possuindo uma cobertura dupla de vidros colocada de modo a deixar um espaço para a circulação de ar. Os raios solares atravessam a cobertura de vidro e aquecem a massa absorvente de tijolo, a qual aquece o ar que é introduzido no interior da construção por efeito de termossifão. Uma das principais características do coletor solar acumulador consiste no fato de que a resposta do coletor é defasada no tempo. Este fenômeno permite que o coletor entregue calor ao ambiente mesmo após o término da radiação solar. Essa defasagem dos picos de energia térmica ocorre devido ao baixo valor da difusividade térmica do concreto. Este trabalho foi dividido em duas etapas. A primeira etapa consistiu na montagem de um calorímetro para controle e monitoração das variáveis envolvidas. No interior do calorímetro foram instaladas 36 garrafas com água. As temperaturas dos conteúdos das garrafas, do coletor solar e as radiações envolvidas foram monitoradas através de 26 sensores de temperatura de CI, 8 sensores resistivos PT100 e dois sensores de radiação fotovoltaicos. Para obter as medidas dos sensores instalados foi feita a montagem de um sistema de aquisição de dados interfaceado a um microcomputador A segunda etapa consistiu na produção de um programa computacional, escrito em linguagem Fortran 90, para simular o comportamento térmico dos diversos elementos constituintes do coletor, determinar a potência térmica do coletor solar e sua eficiência diária. Para a simulação numérica do coletor solar acumulador, adotou-se um modelo simplificado bidimensional do mesmo. Foi integrada, através do Método dos Volumes Finitos, a equação de difusão de calor transiente em 2 dimensões. Na formulação das equações lineares optou-se pelo emprego das diferenças centrais no espaço e formulação explícita no tempo. Ao todo foram produzidas 4 malhas computacionais, com distintos refinamentos e foi realizado o estudo da estabilidade numérica das diversas malhas. Através da montagem experimental obtiveram-se várias características térmicas do comportamento do sistema, entre as quais, a transmitância da cobertura, curvas de temperatura do ar fornecido ao calorímetro e curva da eficiência diária do coletor solar . Através da simulação numérica foi possível determinar a potência térmica que o coletor entrega para o laboratório, a eficiência do coletor, os campos de temperatura e a vazão mássica nos diversos canais interiores do coletor solar.
Resumo:
In this paper we developed a prototype for dynamic and quantitative analysis of the hardness of metal surfaces by penetration tests. It consists of a micro-indenter which is driven by a gear system driven by three-rectified. The sample to be tested is placed on a table that contains a load cell that measures the deformation in the sample during the penetration of micro-indenter. With this prototype it is possible to measure the elastic deformation of the material obtained by calculating the depth of penetration in the sample from the difference of turns between the start of load application to the application of the load test and return the indenter until the complete termination of load application. To determine the hardness was used to measure the depth of plastic deformation. We used 7 types of steel trade to test the apparatus. There was a dispersion of less than 10% for five measurements made on each sample and a good agreement with the values of firmness provided by the manufacturers.
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
The present work deals with the linear analysis of bi-dimensional axisymmetric structures, through development and implementation of a Finite Element Method code. The structures are initially studied alone and afterwards compatibilized into coupled structures, that is, assemblages, including tanks and pressure vessels. Examples are analysed and, in order to prove accuracy, the results were compared with those furnished by the analytical solutions
Resumo:
The bidimensional periodic structures called frequency selective surfaces have been well investigated because of their filtering properties. Similar to the filters that work at the traditional radiofrequency band, such structures can behave as band-stop or pass-band filters, depending on the elements of the array (patch or aperture, respectively) and can be used for a variety of applications, such as: radomes, dichroic reflectors, waveguide filters, artificial magnetic conductors, microwave absorbers etc. To provide high-performance filtering properties at microwave bands, electromagnetic engineers have investigated various types of periodic structures: reconfigurable frequency selective screens, multilayered selective filters, as well as periodic arrays printed on anisotropic dielectric substrates and composed by fractal elements. In general, there is no closed form solution directly from a given desired frequency response to a corresponding device; thus, the analysis of its scattering characteristics requires the application of rigorous full-wave techniques. Besides that, due to the computational complexity of using a full-wave simulator to evaluate the frequency selective surface scattering variables, many electromagnetic engineers still use trial-and-error process until to achieve a given design criterion. As this procedure is very laborious and human dependent, optimization techniques are required to design practical periodic structures with desired filter specifications. Some authors have been employed neural networks and natural optimization algorithms, such as the genetic algorithms and the particle swarm optimization for the frequency selective surface design and optimization. This work has as objective the accomplishment of a rigorous study about the electromagnetic behavior of the periodic structures, enabling the design of efficient devices applied to microwave band. For this, artificial neural networks are used together with natural optimization techniques, allowing the accurate and efficient investigation of various types of frequency selective surfaces, in a simple and fast manner, becoming a powerful tool for the design and optimization of such structures
Resumo:
In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements
Resumo:
Sugarcane is one of the most important products of the world and Brazil is responsible for 25 % of the world production. One problem of this culture at northeast of Brazil is the early flowering. In our laboratory, it has been made before four subtractive libraries using early and late flowering genotypes in order to identify messages related to the flowering process. In this work, two cDNAs were chosen to make in silico analysis and overexpression constructs. Another approach to understand the flowering process in sugarcane was to use proteomic tools. First, the protocol for protein extraction using apical meristem was set up. After that, these proteins were separated on two bidimensional gels. It was possible to observe some difference for some regions of these gels as well as some proteins that can be found in all conditions. The next step, spots will be isolated and sequence on MS spectrometry in order to understand this physiological process in sugarcane
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC