939 resultados para All-sky-survey
Resumo:
We report the discovery with XMM-Newton of a hard-thermal (T similar to 130 MK) and variable X-ray emission from the Be star HD 157832, a new member of the puzzling class of gamma-Cas-like Be/X-ray systems. Recent optical spectroscopy reveals the presence of a large/dense circumstellar disk seen at intermediate/high inclination. With a B1.5V spectral type, HD 157832 is the coolest gamma-Cas analog known. In addition, its non-detection in the ROSAT all-sky survey shows that its average soft X-ray luminosity varied by a factor larger than similar to 3 over a time interval of 14 yr. These two remarkable features, ""low"" effective temperature, and likely high X-ray variability turn HD 157832 into a promising object for understanding the origin of the unusually high-temperature X-ray emission in these systems.
Resumo:
We investigate the X-ray properties of the Parkes sample of Bat-spectrum radio sources using data from the ROSAT All-Sky Survey and archival pointed PSPC observations. In total, 163 of the 323 sources are detected. For the remaining 160 sources, 2 sigma upper limits to the X-ray flux are derived. We present power-law photon indices in the 0.1-2.4 keV energy band for 115 sources, which were determined either with a hardness ratio technique or from direct fits to pointed PSPC data if a sufficient number of photons were available. The average photon index is <Gamma > = 1.95(-0.12)(+0.13) for flat-spectrum radio-loud quasars, <Gamma > = 1.70(-0.24)(+0.23) for galaxies, and <Gamma > = 2.40(-0.31)(+0.12) for BL Lac objects. The soft X-ray photon index is correlated with redshift and with radio spectral index in the sense that sources at high redshift and/or with flat (or inverted) radio spectra have flatter X-ray spectra on average. The results are in accord with orientation-dependent unification schemes for radio-loud active galactic nuclei. Webster et al. discovered many sources with unusually red optical continua among the quasars of this sample, and interpreted this result in terms of extinction by dust. Although the X-ray spectra in general do not show excess absorption, we find that low-redshift optically red quasars have significantly lower soft X-ray luminosities on average than objects with blue optical continua. The difference disappears for higher redshifts, as is expected for intrinsic absorption by cold gas associated with the dust. In addition, the scatter in log(f(x)/f(o)) is consistent with the observed optical extinction, contrary to previous claims based on optically or X-ray selected samples. Although alternative explanations for the red optical continua cannot be excluded with the present X-ray data, we note that the observed X-ray properties are consistent with the idea that dust plays an important role in some of the radio-loud quasars with red optical continua.
Resumo:
The Parkes Half-Jansky Flat-Spectrum Sample contains a large number of sources with unusually red optical-to-near-infrared (NIR) continua. If this is to be interpreted as extinction by dust in the line of sight, then associated material might also give rise to absorption in the soft X-ray regime. This hypothesis is tested using broadband (0.1-2.4 keV) data from the ROSAT All-Sky Survey. Significant (>3 sigma confidence level) correlations between the optical (and NIR)-to-soft X-ray continuum slope and optical extinction are found in the data, consistent with absorption by material with metallicity and a range in the gas-to-dust ratio as observed in the local ISM. Under this simple model, the soft X-rays are absorbed at a level consistent with the range of extinctions (0 < A(V) < 6 mag) implied by the observed optical reddening. Excess X-ray absorption by warm (ionized) gas, (i.e., a warm absorber) is not required by the data.
Resumo:
We report the discovery, from the H I Parkes All-Sky Survey (HIPASS), of an isolated cloud of neutral hydrogen, which we believe to be extragalactic. The H I mass of the cloud (HIPASS J1712-64) is very low, 1.7 x 10(7) M-circle dot, using an estimated distance of similar to 3.2 Mpc. Most significantly, we have found no optical companion to this object to very faint limits [mu(B) similar to 27 mag arcsec(-2)]. HIPASS J1712-64 appears to be a binary system similar to, but much less massive than, H I 1225 + 01 (the Virgo H. I cloud) and has a size of at least 15 kpc. The mean velocity dispersion measured with the Australia Telescope Compact Array (ATCA) is only 4 km s(-1) for the main component and, because of the weak or nonexistent star formation, possibly reflects the thermal line width (T < 2000 K) rather than bulk motion or turbulence. The peak column density for HIPASS J1712-64, from the combined Parkes and ATCA data, is only 3.5 x 1019 cm(-2), which is estimated to be a factor of 2 below the critical threshold for star formation. Apart from its significantly higher velocity, the properties of HIPASS J1712-64 are similar to the recently recognized class of compact high-velocity clouds. We therefore consider the evidence for a Local Group or Galactic origin, although a more plausible alternative is that HIPASS J1712-64 was ejected from the interacting Magellanic Cloud-Galaxy system at perigalacticon similar to 2 x 10(8) yr ago.
Resumo:
The H I Parkes All-Sky Survey (HIPASS) is a blind 21 cm survey for extragalactic neutral hydrogen, covering the whole southern sky. The HIPASS Bright Galaxy Catalog (BGC) is a subset of HIPASS and contains the 1000 H I brightest (peak flux density) galaxies. Here we present the 138 HIPASS BGC galaxies that had no redshift measured prior to the Parkes multibeam H I surveys. Of the 138 galaxies, 87 are newly cataloged. Newly cataloged is defined as having no optical ( or infrared) counterpart in the NASA/IPAC Extragalactic Database. Using the Digitized Sky Survey, we identify optical counterparts for almost half of the newly cataloged galaxies, which are typically of irregular or Magellanic morphological type. Several H I sources appear to be associated with compact groups or pairs of galaxies rather than an individual galaxy. The majority ( 57) of the newly cataloged galaxies lie within 10degrees of the Galactic plane and are missing from optical surveys as a result of confusion with stars or dust extinction. This sample also includes newly cataloged galaxies first discovered by Henning et al. in the H I shallow survey of the zone of avoidance. The other 30 newly cataloged galaxies escaped detection because of their low surface brightness or optical compactness. Only one of these, HIPASS J0546-68, has no obvious optical counterpart, as it is obscured by the Large Magellanic Cloud. We find that the newly cataloged galaxies with -b->10degrees are generally lower in H I mass and narrower in velocity width compared with the total HIPASS BGC. In contrast, newly cataloged galaxies behind the Milky Way are found to be statistically similar to the entire HIPASS BGC. In addition to these galaxies, the HIPASS BGC contains four previously unknown H I clouds.
Resumo:
Using data from the H I Parkes All Sky Survey (HIPASS), we have searched for neutral hydrogen in galaxies in a region similar to25x25 deg(2) centred on NGC 1399, the nominal centre of the Fornax cluster. Within a velocity search range of 300-3700 km s(-1) and to a 3sigma lower flux limit of similar to40 mJy, 110 galaxies with H I emission were detected, one of which is previously uncatalogued. None of the detections has early-type morphology. Previously unknown velocities for 14 galaxies have been determined, with a further four velocity measurements being significantly dissimilar to published values. Identification of an optical counterpart is relatively unambiguous for more than similar to90 per cent of our H I galaxies. The galaxies appear to be embedded in a sheet at the cluster velocity which extends for more than 30degrees across the search area. At the nominal cluster distance of similar to20 Mpc, this corresponds to an elongated structure more than 10 Mpc in extent. A velocity gradient across the structure is detected, with radial velocities increasing by similar to500 km s(-1) from south-east to north-west. The clustering of galaxies evident in optical surveys is only weakly suggested in the spatial distribution of our H I detections. Of 62 H I detections within a 10degrees projected radius of the cluster centre, only two are within the core region (projected radius
Resumo:
Recent studies of relativistic jet sources in the Galaxy, also known as microquasars, have been very useful in trying to understand the accretion/ejection processes that take place near compact objects. However, the number of sources involved in such studies is still small. In an attempt to increase the number of known microquasars we have carried out a search for new Radio Emitting X-ray Binaries (REXBs). These sources are the ones to be observed later with VLBI techniques to unveil their possible microquasar nature. To this end, we have performed a cross-identification between the X-ray ROSAT all sky survey Bright Source Catalog (RBSC) and the radio NRAO VLA Sky Survey (NVSS) catalogs under very restrictive selection criteria for sources with |b|<5 degrees. We have also conducted a deep observational radio and optical study for six of the selected candidates. At the end of this process two of the candidates appear to be promising, and deserve additional observations aimed to confirm their proposed microquasar nature.
Resumo:
With Two-Micron All-Sky Survey (2MASS) photometry and proper motions, Bonatto et al. suggested that FSR 1767 is a globular cluster (GC), while with J and K NTT/SOFI photometry Froebrich, Meusinger & Scholz concluded that it is not a star cluster. In this study, we combine previous and new evidence that are consistent with a GC. For instance, we show that the horizontal branch (HB) and red giant branch (RGB) stars, besides sharing a common proper motion, have radial density profiles that consistently follow the King`s law independently. Reddening maps around FSR 1767 are built using the bulge RGB as reference and also Schlegel`s extinction values to study local absorptions. Both approaches provide similar maps and show that FSR 1767 is not located in a dust window, which otherwise might have produced the stellar overdensity. Besides, neighbouring regions of similar reddening as FSR 1767 do not present the blue HB stars that are a conspicuous feature in the colour-magnitude diagram of FSR 1767. We report the presence of a compact group of stars located in the central parts of FSR 1767. It appears to be a detached post-collapse core, similar to those of other nearby low-luminosity GCs projected towards the bulge. We note that while the NTT/SOFI photometry of the star cluster FSR 1716 matches perfectly that from 2MASS, it shows a considerable offset for FSR 1767. We discuss the possible reasons why both photometries differ. We confirm our previous structural and photometric fundamental parameters for FSR 1767, which are consistent with a GC.
Resumo:
Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz`min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating fraction is (38(-6)(+7))%, compared with 21% expected for isotropic cosmic rays. This is down from the early estimate of (69-(+11)(13))%. The enlarged set of arrival directions is examined also in relation to other populations of nearby extragalactic objects: galaxies in the 2 Microns All Sky Survey and active galactic nuclei detected in hard X-rays by the Swift Burst Alert Telescope. A celestial region around the position of the radiogalaxy Cen A has the largest excess of arrival directions relative to isotropic expectations. The 2-point autocorrelation function is shown for the enlarged set of arrival directions and compared to the isotropic expectation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The recent astronomical observations indicate that the universe has null spatial curvature, is accelerating and its matter-energy content is composed by circa 30% of matter (baryons + dark matter) and 70% of dark energy, a relativistic component with negative pressure. However, in order to built more realistic models it is necessary to consider the evolution of small density perturbations for explaining the richness of observed structures in the scale of galaxies and clusters of galaxies. The structure formation process was pioneering described by Press and Schechter (PS) in 1974, by means of the galaxy cluster mass function. The PS formalism establishes a Gaussian distribution for the primordial density perturbation field. Besides a serious normalization problem, such an approach does not explain the recent cluster X-ray data, and it is also in disagreement with the most up-to-date computational simulations. In this thesis, we discuss several applications of the nonextensive q-statistics (non-Gaussian), proposed in 1988 by C. Tsallis, with special emphasis in the cosmological process of the large structure formation. Initially, we investigate the statistics of the primordial fluctuation field of the density contrast, since the most recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) indicates a deviation from gaussianity. We assume that such deviations may be described by the nonextensive statistics, because it reduces to the Gaussian distribution in the limit of the free parameter q = 1, thereby allowing a direct comparison with the standard theory. We study its application for a galaxy cluster catalog based on the ROSAT All-Sky Survey (hereafter HIFLUGCS). We conclude that the standard Gaussian model applied to HIFLUGCS does not agree with the most recent data independently obtained by WMAP. Using the nonextensive statistics, we obtain values much more aligned with WMAP results. We also demonstrate that the Burr distribution corrects the normalization problem. The cluster mass function formalism was also investigated in the presence of the dark energy. In this case, constraints over several cosmic parameters was also obtained. The nonextensive statistics was implemented yet in 2 distinct problems: (i) the plasma probe and (ii) in the Bremsstrahlung radiation description (the primary radiation from X-ray clusters); a problem of considerable interest in astrophysics. In another line of development, by using supernova data and the gas mass fraction from galaxy clusters, we discuss a redshift variation of the equation of state parameter, by considering two distinct expansions. An interesting aspect of this work is that the results do not need a prior in the mass parameter, as usually occurs in analyzes involving only supernovae data.Finally, we obtain a new estimate of the Hubble parameter, through a joint analysis involving the Sunyaev-Zeldovich effect (SZE), the X-ray data from galaxy clusters and the baryon acoustic oscillations. We show that the degeneracy of the observational data with respect to the mass parameter is broken when the signature of the baryon acoustic oscillations as given by the Sloan Digital Sky Survey (SDSS) catalog is considered. Our analysis, based on the SZE/X-ray data for a sample of 25 galaxy clusters with triaxial morphology, yields a Hubble parameter in good agreement with the independent studies, provided by the Hubble Space Telescope project and the recent estimates of the WMAP
Resumo:
Neste trabalho estudamos o comportamento das estrelas pertencentes a sistemas planetários no que diz respeito às suas características infravermelho e à distribuição espectral de energia (SED). Nosso estudo tem como base uma análise detalhada do comportamento da emissão no infravermelho de 48 estrelas com planetas, classificadas como estrelas da seqüência principal, subgigantes ou gigantes. Foram analisados dados de fotometria infravermelho nas bandas 12, 25 e 60µm do catálogo de fontes IRAS puntiformes (IPSC) e nas bandas JHK do projeto 2 Micron All Sky Survey (2MASS). A partir do cálculo da discrepância na posição de apontamento da fonte e do cálculo do índice de cor, selecionamos e localizamos os objetos no diagrama de cor-cor do IRAS. Este diagrama permite-nos identificar possíveis objetos detentores de disco de poeira. Fizemos também uma análise da distribuição espectral de energia onde observamos também traços de excesso de fluxo no infravermelho, com isso, confirmarmos a presença do disco de poeira nos objetos identificados no diagrama de cor. Apesar da atual amostra de estrelas com planetas incluir apenas um subconjunto de estrelas com planetas detectadas na vizinhança solar, a presente análise do fluxo infravermelho nesses objetos oferecem uma possibilidade única de estudar as características infravermelho das estrelas pertencentes aos sistemas planetários extra-solar. Neste contexto, nosso estudo aponta resultados interessantes, entre outros destacamos o fato de algumas estrelas com planetas apresentarem um peculiar fluxo IRAS [60-25], indicando a co-existência de poeira juntamente com os planetas destes sistemas extra solar
Resumo:
We present a photometric catalogue of compact groups of galaxies (p2MCGs) automatically extracted from the Two-Micron All Sky Survey (2MASS) extended source catalogue. A total of 262 p2MCGs are identified, following the criteria defined by Hickson, of which 230 survive visual inspection (given occasional galaxy fragmentation and blends in the 2MASS parent catalogue). Only one quarter of these 230 groups were previously known compact groups (CGs). Among the 144 p2MCGs that have all their galaxies with known redshifts, 85 (59?per cent) have four or more accordant galaxies. This v2MCG sample of velocity-filtered p2MCGs constitutes the largest sample of CGs (with N = 4) catalogued to date, with both well-defined selection criteria and velocity filtering, and is the first CG sample selected by stellar mass. It is fairly complete up to Kgroup similar to 9 and radial velocity of similar to 6000?km?s-1. We compared the properties of the 78 v2MCGs with median velocities greater than 3000?km?s-1 with the properties of other CG samples, as well as those (mvCGs) extracted from the semi-analytical model (SAM) of Guo et al. run on the high-resolution Millennium-II simulation. This mvCG sample is similar (i.e. with 2/3 of physically dense CGs) to those we had previously extracted on three other SAMs run on the Millennium simulation with 125 times worse spatial and mass resolutions. The space density of v2MCGs within 6000?km?s-1 is 8.0 X 10-5?h3?Mpc-3, i.e. four times that of the Hickson sample [Hickson Compact Group (HCG)] up to the same distance and with the same criteria used in this work, but still 40?per cent less than that of mvCGs. The v2MCG constitutes the first group catalogue to show a statistically large firstsecond ranked galaxy magnitude gap according to TremaineRichstone statistics, as expected if the first ranked group members tend to be the products of galaxy mergers, and as confirmed in the mvCGs. The v2MCG is also the first observed sample to show that first-ranked galaxies tend to be centrally located, again consistent with the predictions obtained from mvCGs. We found no significant correlation of group apparent elongation and velocity dispersion in the quartets among the v2MCGs, and the velocity dispersions of apparently round quartets are not significantly larger than those of chain-like ones, in contrast to what has been previously reported in HCGs. By virtue of its automatic selection with the popular Hickson criteria, its size, its selection on stellar mass, and its statistical signs of mergers and centrally located brightest galaxies, the v2MCG catalogue appears to be the laboratory of choice to study physically dense groups of four or more galaxies of comparable luminosity.
Resumo:
The parameters for the newly discovered open cluster Alessi 95 are established on the basis of available photometric and spectroscopic data, in conjunction with new observations. Colour excesses for spectroscopically observed B- and A-type stars near SU Cas follow a reddening relation described by E(U-B)/E(B-V) = 0.83 + 0.02E(B-V), implying a value of R=AV/E(B-V) ? 2.8 for the associated dust. Alessi 95 has a mean reddening of E(B-V)(B0) = 0.35 +/- 0.02 s.e., an intrinsic distance modulus of V0-MV= 8.16 +/- 0.04 s.e. (+/- 0.21 s.d.), d= 429 +/- 8 pc, and an estimated age of 108.2 yr from zero-age main sequence (ZAMS) fitting of available UBV, CCD BV, NOMAD, and Two Micron All Sky Survey JHKs observations of cluster stars. SU Cas is a likely cluster member, with an inferred space reddening of E(B-V) = 0.33 +/- 0.02 and a luminosity of < MV >=-3.15 +/- 0.07 s.e., consistent with overtone pulsation (PFM= 2.75 d), as also implied by the Cepheids light-curve parameters, rate of period increase and Hipparcos parallaxes for cluster stars. There is excellent agreement of the distance estimates for SU Cas inferred from cluster ZAMS fitting, its pulsation parallax derived from the infrared surface brightness technique and Hipparcos parallaxes, which all agree to within a few per cent.
Resumo:
Solar infrared colors provide powerful constraints on the stellar effective temperature scale, but they must be measured with both accuracy and precision in order to do so. We fulfill this requirement by using line-depth ratios to derive in a model-independent way the infrared colors of the Sun, and we use the latter to test the zero point of the Casagrande et al. effective temperature scale, confirming its accuracy. Solar colors in the widely used Two Micron All Sky Survey (2MASS) JHK(s) and WISE W1-4 systems are provided: (V - J)(circle dot) = 1.198, (V - H)(circle dot) = 1.484, (V - K-s)(circle dot) = 1.560, (J - H)(circle dot) = 0.286, (J - K-s)(circle dot) = 0.362, (H - K-s)(circle dot) = 0.076, (V - W1)(circle dot) = 1.608, (V - W2)(circle dot) = 1.563, (V - W3)(circle dot) = 1.552, and (V - W4)(circle dot) = 1.604. A cross-check of the effective temperatures derived implementing 2MASS or WISE magnitudes in the infrared flux method confirms that the absolute calibration of the two systems agrees within the errors, possibly suggesting a 1% offset between the two, thus validating extant near-and mid-infrared absolute calibrations. While 2MASS magnitudes are usually well suited to derive T-eff, we find that a number of bright, solar-like stars exhibit anomalous WISE colors. In most cases, this effect is spurious and can be attributed to lower-quality measurements, although for a couple of objects (3%+/- 2% of the total sample) it might be real, and may hint at the presence of warm/hot debris disks.
Resumo:
Context. Nearby late-type stars are excellent targets for seeking young objects in stellar associations and moving groups. The origin of these structures is still misunderstood, and lists of moving group members often change with time and also from author to author. Most members of these groups have been identified by means of kinematic criteria, leading to an important contamination of previous lists by old field stars. Aims. We attempt to identify unambiguous moving group members among a sample of nearby-late type stars by studying their kinematics, lithium abundance, chromospheric activity, and other age-related properties. Methods. High-resolution echelle spectra (R ~ 57 000) of a sample of nearby late-type stars are used to derive accurate radial velocities that are combined with the precise Hipparcos parallaxes and proper motions to compute galactic-spatial velocity components. Stars are classified as possible members of the classical moving groups according to their kinematics. The spectra are also used to study several age-related properties for young late-type stars, i.e., the equivalent width of the lithium Li i 6707.8 Å line or the R'_HK index. Additional information like X-ray fluxes from the ROSAT All-Sky Survey or the presence of debris discs is also taken into account. The different age estimators are compared and the moving group membership of the kinematically selected candidates are discussed. Results. From a total list of 405 nearby stars, 102 have been classified as moving group candidates according to their kinematics. i.e., only ~25.2% of the sample. The number reduces when age estimates are considered, and only 26 moving group candidates (25.5% of the 102 candidates) have ages in agreement with the star having the same age as an MG member.