996 resultados para Alkaline synthesis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report a simple and environmentally friendly synthesis of silver nanoparticles (AgNps) and their activities towards the oxygen reduction reaction (ORR). Ultraviolet spectroscopy (UV-vis) and transmission electron microscopy confirmed the formation of poly(vinyl pyrrolidone)-protected colloidal AgNps through direct reduction of Ag+ by glycerol in alkaline medium at room temperature. For the ORR tests, the AgNps were directly produced onto carbon to yield the Ag/C catalyst. Levich plots revealed the process to occur via 2.7 electrons, suggesting that the carbon support contributes to the ORR. We discuss here possibilities of improving the catalytic properties of the Ag/C for ORR by optimizing the parameters of the synthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strontium zirconate oxide was synthesized by co-precipitation and the citrate route and was evaluated as a heterogeneous catalyst for biodiesel production. The catalyst samples were characterized by XRD, FTIR, and TG, and catalytic activity was measured based on the ester content of the biodiesel produced that was quantified by GC. The co-precipitate samples were obtained in alkaline pH and had a mixture of the perovskite and pure strontium and zirconium oxide phases. Ester conversion using these samples was approximately 1.6%, indicating no catalytic activity. The citrate route was more efficient in producing perovskite when carried out at pH 7-8; excess SrCO3 was found on the catalyst surface due to CO2 adsorption, thus demonstrating no catalytic activity. The same synthesis carried out at pH 2 resulted in free OH- groups, with a small amount of the carbonate species that produced ester yield values of 98%. Therefore, matrices based on strontium zirconate produced via the citrate route in acidic media are potential heterogeneous catalysts for transesterification. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research was to determine the role of acidic ribosomal protein (ARP) phosphorylation in translation. Ribosomes (Rbs) from germinated maize (Zea mays L.) axes had four ARP bands within 4.2 to 4.5 isoelectric points when analyzed by isoelectric focusing. Two of these bands disappeared after alkaline phosphatase hydrolysis. During germination a progressive change from nonphosphorylated (0 h) to phosphorylated ARP (24 h) forms was observed in the Rbs; a free cytoplasmic pool of nonphosphorylated ARPs was also identified by immunoblot and isoelectric focusing experiments. De novo ARP synthesis initiated very slowly early in germination, whereas ARP phosphorylation occurred rapidly within this period. ARP-phosphorylated versus ARP-nonphosphorylated Rbs were tested in an in vitro reticulocyte lysate translation system. Greater in vitro mRNA translation rates were demonstrated for the ARP-phosphorylated Rbs than for the non-ARP-phosphorylated ones. Rapamycin application to maize axes strongly inhibited S6 ribosomal protein phosphorylation, but did not interfere with the ARP phosphorylation reaction. We conclude that ARP phosphorylation does not depend on ARP synthesis or on ARP assembly into Rbs. Rather, this process seems to be part of a translational regulation mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The opportunistic human pathogen Pseudomonas aeruginosa produces a variety of virulence factors, including exotoxin A, elastase, alkaline protease, alginate, phospholipases, and extracellular rhamnolipids. The previously characterized rhlABR gene cluster encodes a regulatory protein (RhlR) and a rhamnosyltransferase (RhlAB), both of which are required for rhamnolipid synthesis. Another gene, rhII, has now been identified downstream of the rhlABR gene cluster. The putative RhlI protein shares significant sequence similarity with bacterial autoinducer synthetases of the LuxI type. A P. aeruginosa rhlI mutant strain carrying a disrupted rhlI gene was unable to produce rhamnolipids and lacked rhamnosyltransferase activity. Rhamnolipid synthesis was restored by introducing a wild-type rhlI gene into such strains or, alternatively, by adding either the cell-free spent supernatant from a P. aeruginosa wild-type strain or synthetic N-acylhomoserine lactones. Half-maximal induction of rhamnolipid synthesis in the rhlI mutant strain required 0.5 microM N-butyrylhomoserine lactone or 10 microM N-(3-oxohexanoyl)homoserine lactone. The P. aeruginosa rhlA promoter was active in the heterologous host Pseudomonas putida when both the rhlR and rhlI genes were present or when the rhlR gene alone was supplied together with synthetic N-acylhomoserine lactones. The RhlR-RhlI regulatory system was found to be essential for the production of elastase as well, and cross-communication between the RhlR-RhlI rhamnolipid regulatory system and the LasR-LasI elastase regulatory system was demonstrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of nitrogenated carbon nanotubes (N-CNTs) with up to 6.1 wt% N, via the use of pyridine as the nitrogen containing carbon precursor, can provide a facile route to significantly enhance the low intrinsic specific capacitance of carbon nanotubes. The nitrogen functionalities determine this, at least, five-fold increase of the specific capacitance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many dietary factors have been associated with a decreased risk of developing cancer. One potential mechanism by which these factors, chemopreventors, protect against cancer may be via alteration of carcinogen metabolism. The broccoli constituent sulforaphane (1-isothiocyanate-4-methylsulinylbutane) (CH3-S0-(CH2)4-NCS) has been isolated as a potential inducer of phase II detoxification enzymes and also protects rodents against 9,10-dimethyl-1,2-benz[aJanthracene-induced mammary tumours. The ability of sulforaphane to also modulate phase I activation enzymes (cytochrome P450) (CYP450) was studied here. Sulforaphane was synthesised with an overall yield of 15%, essentially via 1-methylsulfinylphthalimidobutane, which was oxidised to the sulfoxide moiety. Deprotective removal of phthalimide yielded the amine, which was converted into sulforaphane by reaction with N,N'-thionocarbonyldiimidazole. Purity (95 %) was checked by 1H-NMR,13C-NMR and infrared and mass spectrometry.Sulforaphane was a competitive inhibitor of CYP2E1 in acetone-induced Sprague-Dawley rat microsomes (Ki 37.9 ± 4.5μM), as measured by the p-nitrophenol hydroxylase assay. Ethoxyresorufin deethylase activity (EROD), a measurement of CYP1A activity, was also inhibited by sulforaphane (100μM) but was not competitive, and a preincubation time-dependence was observed. In view of these results, the capacity of sulforaphane to inhibit N-nitrosodimethylamine (NDMA)-induced genotoxicity (CYP2E1-mediated) was studied using mouse liver activation systems. Sulforaphane (>0.8μM) inhibited the mutagenicity of NDMA (4.4 mg/plate) in Salmonella typhimurium strain TA100 after pre-incubation for 45 min with acetone-induced liver 9000 g supernatants from Balb/c mice. Unscheduled DNA synthesis induced by NDMA (33μ5 M) in mouse hepatocytes was also reduced by sulforaphane in a concentration-dependent manner (0.064-20μM). Sulforaphane was not genotoxic itself in any of these systems and cytotoxic only at high concentrations (>0.5 mM and > 40μM respectively). The ability of sulforaphane to modulate the orthologous human enzymes was studied using a human epithelial liver cell line (THLE) expressing individual human CYP450 isoenzymes. Using the Comet assay (a measurement of DNA strand breakage under alkaline conditions), NDMA (0.01-1μg/ml) and IQ (0.1-10μg/ml) were used to produce strand breaks in T5-2E1 cells (expressing human CYP2E1) and T5-1A2 cells (expressing human CYP1A2) respectively, however no response was observed in T5-neo cells (without CYP450 cDNA transfection). Sulforaphane inhibited both NDMA and IQ-induced DNA strand breakage in a concentration-dependent manner (0.1-10μM).The inhibition of metabolic activation as a basis for the antigenotoxic action of sulforaphane in these systems (bacteria, rodent hepatocytes and human cells) is further supported by the lack of this chemopreventor to influence NaN3 mutagenicity in S. typhimurium and H202-induced DNA strand breakage in T5-neo cells. These findings suggest that inhibition of CYP2E1 and CYP1A by sulforaphane may contribute to its chemoprotective potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Ph.D. thesis concerns the synthesis of nanostructured Cu-containing materials to be used as electrode modifiers for the CO2 electroreduction in aqueous phase and the evaluation of their catalytic performances. Inspired by the fascinating concept of the artificial photosynthesis-oriented systems, several catalytic layers were electrochemically loaded on carbonaceous gas diffusion membranes, i.e., 3D structures that allow the design of eco-friendly materials for applications in green carbon recycling processes. In particular, early studies on Cu(I-II)-Cu(0) nanostructured materials were carried out to produce films on 4 cm2 sized supports by means of a fast and low-cost electrochemical procedure. Besides, through a screening of potentials, it was possible to find out a selective value for the CH3COOH production at -0.4 V vs RHE with a maximum productivity (1h reaction), ensured by the presence of the Cu+/Cu0 active redox couple (0.31 mmol gcat-1 h-1). On the basis of these results, further optimisations of the electrocatalyst chemical composition were carried out with the aim of (i) facilitating the interaction with CO2, (ii) increasing the dispersion of the catalytic active phase, and (iii) enhancing the CH3COOH productivity. To this aim, novel electrocatalysts based on layered double hydroxides (LDHs) were optimised, having as a final goal the formation of a new Cu2O-Cu0 based electrocatalyst derived from electrochemically achieved CuMgAl LDHs, subjected to calcination and reduction processes. The as-obtained electrocatalysts were tested for the selective production of CH3COOH and unprecedented results were obtained with the pristine CuMgAl LDH (2.0 mmol gcat-1 h-1). Additional characterisations of such an electrocatalyst have highlighted the possibility to achieve a ternary LDH in intimate contact with Cu2O-Cu0 species starting from the electrochemical deposition. The presence of these species, along with an alkaline environment on the electrode surface, were essential to preserve the selectivity towards the desired product, as confirmed by further operando studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twelve novel 8-hydroxyquinoline derivatives were synthesized with good yields by performing copper-catalyzed Huisgen 1,3-dipolar cycloaddition (click reaction) between an 8-O-alkylated-quinoline containing a terminal alkyne and various aromatic or protected sugar azides. These compounds were evaluated in vitro for their antiproliferative activity on various cancer cell types. Protected sugar derivative 16 was the most active compound in the series, exhibiting potent antiproliferative activity and high selectivity toward ovarian cancer cells (OVCAR-03, GI50 < 0.25 μg mL(-1)); this derivative was more active than the reference drug doxorubicin (OVCAR-03, GI50 = 0.43 μg mL(-1)). In structure-activity relationship (SAR) studies, the physico-chemical parameters of the compounds were evaluated and docking calculations were performed for the α-glucosidase active site to predict the possible mechanism of action of this series of compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lawsonia inermis mediated synthesis of silver nanoparticles (Ag-NPs) and its efficacy against Candida albicans, Microsporum canis, Propioniabacterium acne and Trichophyton mentagrophytes is reported. A two-step mechanism has been proposed for bioreduction and formation of an intermediate complex leading to the synthesis of capped nanoparticles was developed. In addition, antimicrobial gel for M. canis and T. mentagrophytes was also formulated. Ag-NPs were synthesized by challenging the leaft extract of L. inermis with 1 mM AgNO₃. The Ag-NPs were characterized by Ultraviolet-Visible (UV-Vis) spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Transmission electron microscopy (TEM), nanoparticle tracking and analysis sytem (NTA) and zeta potential was measured to detect the size of Ag-NPs. The antimicrobial activity of Ag-NPs was evaluated by disc diffusion method against the test organisms. Thus these Ag-NPs may prove as a better candidate drug due to their biogenic nature. Moreover, Ag-NPs may be an answer to the drug-resistant microorganisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new enantioselective Heck-Matsuda desymmetrization reaction was accomplished by using 3-cyclopentenol to produce chiral five-membered 4-aryl cyclopentenol scaffolds in good yields and high ee's, together with some 3-aryl-cyclopentanones as minor products. Mechanistically, the hydroxyl group of 3-cyclopentenol acts as a directing group and is responsible for the cis- arrangement in the formation of the 4-aryl-cyclopentenols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herein we describe the synthesis of a focused library of compounds based on the structure of goniothalamin (1) and the evaluation of the potential antitumor activity of the compounds. N-Acylation of aza-goniothalamin (2) restored the in vitro antiproliferative activity of this family of compounds. 1-(E)-But-2-enoyl-6-styryl-5,6-dihydropyridin-2(1H)-one (18) displayed enhanced antiproliferative activity. Both goniothalamin (1) and derivative 18 led to reactive oxygen species generation in PC-3 cells, which was probably a signal for caspase-dependent apoptosis. Treatment with derivative 18 promoted Annexin V/7-aminoactinomycin D double staining, which indicated apoptosis, and also led to G2 /M cell-cycle arrest. In vivo studies in Ehrlich ascitic and solid tumor models confirmed the antitumor activity of goniothalamin (1), without signs of toxicity. However, derivative 18 exhibited an unexpectedly lower in vivo antitumor activity, despite the treatments being administered at the same site of inoculation. Contrary to its in vitro profile, aza-goniothalamin (2) inhibited Ehrlich tumor growth, both on the ascitic and solid forms. Our findings highlight the importance of in vivo studies in the search for new candidates for cancer treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel 1-(substituted phenyl)-3-(2-oxo-1,3,4-oxadiazol-5-yl) β-carbolines (4a-e) and the corresponding Mannich bases 5-9(a-c) were synthesized and evaluated for their in vitro antitumor activity against seven human cancer cell lines. Compounds of 4a-e series showed a broad spectrum of antitumor activity, with GI50 values lower than 15μM for five cell lines. The derivative 4b, having the N,N-dimethylaminophenyl group at C-1, displayed the highest activity with GI50 in the range of 0.67-3.20μM. A high selectivity and potent activity were observed for some Mannich bases, particularly towards resistant ovarian (NCI-ADR/RES) cell lines (5a, 5b, 6a, 6c and 9b), and ovarian (OVCAR-03) cell lines (5b, 6a, 6c, 9a, 9b and 9c). In addition, the interaction of compound 4b with DNA was investigated by using UV and fluorescence spectroscopic analysis. These studies indicated that 4b interact with ctDNA by intercalation binding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.