960 resultados para Alkali lands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra of the ferroelectric LiH3 (SeO3)2 and NaH3(SeO3)2 and the anti-ferroelectric KH3 (SeO3)2 have been recorded at room temperature using a He-Ne and also an Ar-ion laser source. The infrared absorption spectra of these crystals and their deuterated analogues have been recorded in the region 400–4000 cm−1 both below and above the Curie temperature. From an analysis of the spectrum in the region 400–900 cm−1 it is concluded that (i) in LiH3 (SeO3)2 the protons are ordered in an asymmetric double minimum potential with a low barrier and the spectrum can be interpreted in terms of HSeO3− and H2SeO3 vibrations, (ii) in NaH3 (SeO3)2 all three protons occupy a single minimum potential at room temperature and below the transition temperature the groups HSeO3− and H2SeO3 are present, (iii) the proton at the inversion centre in KH3(SeO3)2 is in a broad troughed potential well and the low temperature spectrum is more likely to be due to H3SeO3+ and SeO32− species. This deviation of the spectrum from that of the previous two crystals is attributed to the difference in H-bond scheme and hence the absence of any cooperative motion of protons in this crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study Contested Lands: Land disputes in semi-arid parts of northern Tanzania. Case Studies of the Loliondo and Sale Division in the Ngorongoro District concentrates on describing the specific land disputes which took place in the 1990s in the Loliondo and Sale Divisions of the Ngorongoro District in northern Tanzania. The study shows the territorial and historical transformation of territories and property and their relation to the land disputes of the 1990s'. It was assumed that land disputes have been firstly linked to changing spatiality due to the zoning policies of the State territoriality and, secondly, they can be related to the State control of property where the ownership of land property has been redefined through statutory laws. In the analysis of the land disputes issues such as use of territoriality, boundary construction and property claims, in geographical space, are highlighted. Generally, from the 1980s onwards, increases in human population within both Divisions have put pressure on land/resources. This has led to the increased control of land/resource, to the construction of boundaries and finally to formalized land rights on village lands of the Loliondo Division. The land disputes have thus been linked to the use of legal power and to the re-creation of the boundary (informal or formal) either by the Maasai or the Sonjo on the Loliondo and Sale village lands. In Loliondo Division land disputes have been resource-based and related to multiple allocations of land or game resource concessions. Land disputes became clearly political and legal struggles with an ecological reference.Land disputes were stimulated when the common land/resource rights on village lands of the Maasai pastoralists became regulated and insecure. The analysis of past land disputes showed that space-place tensions on village lands can be presented as a platform on which spatial and property issues with complex power relations have been debated. The reduction of future land disputes will succeed only when/if local property rights to land and resources are acknowledged, especially in rural lands of the Tanzanian State.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon tetrahalides, SiX4 (X=F, Cl, Br) and the fluorosilicates of sodium and potassium react with phosphorus pentoxide above 300°C. The tetrahalides give rise to the corresponding phosphoryl halides and silica, while the fluorosilicates form the corresponding metal fluorophosphates and silicon tetrafluoride. The reaction of the fluorosilicates of sodium and potassium with sulphur trioxide occurs at room temperature to give rise to the corresponding metal fluorosulphates and silicon tetrafluoride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of past mechanical history on the subsequent thermal decomposition kinetics of sodium, potassium, rubidium and caesium perchlorates, has been investigated. At low temperatures the decomposition of all these salts is significantly sensitized by pre-compression. At high temperatures, however, prior compression results in a lowered decomposition rate in the case of potassium, rubidium and caesium perchlorates and in an increase in the thermal reactivity of sodium perchlorate. The high temperature behaviour is shown to be an indirect consequence of the low temperature behaviour. The difference in behaviour between sodium perchlorate and the other alkali metal perchlorates is explained on the basis of the stability of the respective chlorates, formed during the low temperature decomposition. This is substantiated by experiments which show that the addition of sodium chlorate to sodium perchlorate brings about a sensitization while potassium perchlorate admixed with potassium chlorate results in a desensitization at high temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recolonisation of soil by macrofauna (especially ants, termites and earthworms) in rehabilitated open-cut mine sites is inevitable and, in terms of habitat restoration and function, typically of great value. In these highly disturbed landscapes, soil invertebrates play a major role in soil development (macropore configuration, nutrient cycling, bioturbation, etc.) and can influence hydrological processes such as infiltration, seepage, runoff generation and soil erosion. Understanding and quantifying these ecosystem processes is important in rehabilitation design, establishment and subsequent management to ensure progress to the desired end goal, especially in waste cover systems designed to prevent water reaching and transporting underlying hazardous waste materials. However, the soil macrofauna is typically overlooked during hydrological modelling, possibly due to uncertainties on the extent of their influence, which can lead to failure of waste cover systems or rehabilitation activities. We propose that scientific experiments under controlled conditions and field trials on post-mining lands are required to quantify (i) macrofauna–soil structure interactions, (ii) functional dynamics of macrofauna taxa,and (iii) their effects on macrofauna and soil development over time. Such knowledge would provide crucial information for soil water models, which would increase confidence in mine waste cover design recommendations and eventually lead to higher likelihood of rehabilitation success of open-cut mining land.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A detailed crystallographic investigation of N-methylacetamide complexes of Li, Na, K, Mg and Ca has been made in view of its importance in the coordination chemistry and biochemistry of alkali and alkaline earth metals. The metal ions bind to the amide oxygen causing an increase in the carbonyl distance and a proportionate decrease in the central C-N bond distance. The decrease in the central C-N distance is accompanied by an increase in the distance of the adjacent C-C bond and a decrease in the adjacent C-N bond distance. The metal ion generally deviates from the direction of the lone pair of the carbonyl oxygen and also from the plane of the peptide, the out-of-plane deviation varying with the ionic potential of the cation. The metal-oxygen distance in alkali and alkaline earth metal complexes of a given coordination number also varies with the ionic potential of the cation, as does the strength of binding of the cations to the amide. The amide molecules are essentially planar in these complexes, as expected from the increased bond order of the central C-N bond. The NH bonds of the amide are generally hydrogen bonded to anions. The structures of the amide complexes are compared with those of other oxygen donor complexes of alkali and alkaline earth metals. The structural study described here also provides a basis for the interpretation of results from spectroscopic and theoretical investigations of the interaction of alkali and alkaline earth metal cations with amides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of sodium azide has been studied in the temperature range 240–360°C in vacuum and under pressure of an inert gas, argon. The results show that the decomposition is partial 360°C. From the observations made in the present work, namely: (i) the decomposition is incomplete both under vacuum and inert gas; (ii) mass spectrometric studies do not reveal any decrease in the intensity of the background species, CO+2, CO+, H2O+, and (iii) sodium metal remains in the ‘free state’ as seen by the formation of a metallic mirror at temperatures above 300°C, it has been argued that the partial nature of decompostion is due to the confinement of the decomposition to intermosaic regions within the lattice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystal structures of lithium, sodium, potassium, calcium and magnesium salts of adenosine 2'-monophosphate (2'-AMP) have been obtained at atomic resolution by X-ray crystallographic methods. 2'-AMP.Li belongs to the monoclinic space group P21 with a = 7.472(3)Å, b = 26.853(6) Å, c = 9.184(1)Å, b = 113.36(1)Å and Z= 4. 2'-AMP.Na and 2'-AMP.K crystallize in the trigonal space groups P31 and P3121 with a = 8.762(1)Å, c = 34.630(5)Å, Z= 6 and a = 8.931(4), Åc = 34.852(9)Å and Z= 6 respectively while 2'-AMP.Ca and 2'-AMP.Mg belong to space groups P6522 and P21 with cell parameters a = 9.487(2), c = 74.622(13), Z = 12 and a = 4.973(1), b = 10.023(2), c = 16.506(2), beta = 91.1(0) and Z = 2 respectively. All the structures were solved by direct methods and refined by full matrix least-squares to final R factors of 0.033, 0.028, 0.075, 0.069 and 0.030 for 2'-AMP.Li, 2'-AMP.Na, 2'- AMP.K, 2'-AMP.Ca and 2'-AMP.Mg, respectively. The neutral adenine bases in all the structures are in syn conformation stabilized by the O5'-N3 intramolecular hydrogen bond as in free acid and ammonium complex reported earlier. In striking contrast, the adenine base is in the anti geometry (cCN = -156.4(2)°) in 2'-AMP.Mg. Ribose moieties adopt C2'-endo puckering in 2'-AMP.Li and 2'-AMP.Ca, C2'-endo-C3'-exo twist puckering in 2'-AMP.Na and 2'-AMP.K and a C3'-endo-C2'-exo twist puckering in 2'-AMP.Mg structure. The conformation about the exocyclic C4'-C5' bond is the commonly observed gauche-gauche (g+) in all the structures except the gauche- trans (g-) conformation observed in 2'-AMP.Mg structure. Lithium ions coordinate with water, ribose and phosphate oxygens at distances 1.88 to 1.99Å. Na+ ions and K+ ions interact with phosphate and ribose oxygens directly and with N7 indirectly through a water oxygen. A distinct feature of 2'-AMP.Na and 2'-AMP.K structures is the involvement of ribose O4' in metal coordination. The calcium ion situated on a two-fold axis coordinates directly with three oxygens OW1, OW2 and O2 and their symmetry mates at distances 2.18 to 2.42Å forming an octahedron. A classic example of an exception to the existence of the O5'-N3 intramolecular hydorgen bond is the 2'-AMP.Mg strucure. Magnesium ion forms an octahedral coordination with three water and three phosphate oxygens at distances ranging from 2.02 to 2.11Å. A noteworthy feature of its coordination is the indirect link with N3 through OW3 oxygen resulting in macrochelation between the base and the phosphate group. Greater affnity of metal clays towards 5' compared to 2' and 3' nucleotides (J. Lawless, E. Edelson, and L. Manring, Am. Chem. Soc. Northwest Region Meeting, Seattle. 1978) due to macrochelation infered from solution studies (S. S. Massoud, H. Sigel, Eur. J. Biochem. 179, 451-458 (1989)) and interligand hydrogen bonding induced by metals postulated from metal-nucleotide structures in solid state (V. Swaminathan and M. Sundaralingam, CRC. Crit. Rev. Biochem. 6, 245-336 (1979)) are borne out by our structures also. The stacking patterns of adenine bases of both 2'-AMP.Na and 2'-AMP.K structures resemble the 2'-AMP.NH4 structure reported in the previous article. 2'-AMP.Li, 2'-AMP.Ca and 2'-AMP.Mg structures display base-ribose O4' stacking. An overview of interaction of monovalent and divalent cations with 2' and 5'-nucleotides has been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unexpected swelling induced in foundation soils can cause distress to structures founded on them. In this paper, the swelling of kaolinitic soils due to interaction with alkali solution has been reported. The induced swelling is attributed to the formation of new minerals, which has been confirmed by X-ray diffraction patters and SEM studies. To understand the effect of alkali concentration and duration of interaction, two series of consolidation experiments have been carried out. In series 1, the specimen were remoulded with water and inundated with alkali solutions and in series 2, the specimen were remoulded and inundated with same alkali solutions. A steep compression during loading cycle and no abnormal swelling during unloading cycle has been noticed for the specimen remoulded with water and inundated with 1 N NaOH solutions. The steep compression is due to the segregation or break down of clay minerals due to alkali interactions. In case of specimen inundated with 4 N NaOH solutions, abnormal swelling has been observed during unloading cycle of the consolidation test. New minerals are formed on interaction of soil with 4 N solution as confirmed by X-ray diffraction patterns. These minerals are known to have very fine pores and possess high water holding capacity. The differences in the amount of swelling of samples remoulded with water and remoulded with alkali solution are due to variations in the concentration of alkali and duration of interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have measured hyperfine structure in the first-excited P state (D lines) of all the naturally occurring alkali atoms. We use high-resolution laser spectroscopy to resolve hyperfine transitions, and measure intervals by locking the frequency shift produced by an acousto-optic modulator to the difference between two transitions. In most cases, the hyperfine coupling constants derived from our measurements improve previous values significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two new alkali metal borophosphates, K-3[BP(3)o(9)(OH)(3)] and Rb-3[B2P3O11(OH)(2)], were synthesized by applying solvothermal techniques using ethanol as solvent. The crystal structures were solved by means of single-crystal X-ray diffraction (K-3[BP3O9(OH)(3)], monoclinic, C2/c (No. 15), a = 2454.6(8) pm, b = 736.3(2) pm, c = 1406.2(4) pm, beta = 118.35(2)degrees, Z = 8; Rb-3[B2P3O11(OH)(2)], monoclinic, P2(1)/c (No. 14), a = 781.6(2) pm, b:= 667.3(2) pm, c = 2424.8(5) pm, beta = 92.88(1)degrees, Z = 4). Both crystal structures comprise borophosphate chain anions. While for the rubidium compound a loop-branched chain motif is found as common for most of the chain anions in alkali metal borophosphates, the crystal structure of the potassium phase comprises the first open-branched chain with the highest phosphate content found so far in this group of compounds. Both chain anions are Closely related to known anhydrous or hydrated phases, and the structural relations are discussed in terms of how the presence of OH groups and hydrogen bonds as well as number, charge, and size of charge balancing cations influence the 3D structural arrangement. The anionic entities are classified in terms of general principles of structural systematics for borophosphates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.