929 resultados para Alimentatore elettronico, Buck-Boost PFC, Ponte intero PWM, Lampada HID


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis reports on the investigations, simulations and analyses of novel power electronics topologies and control strategies. The research is financed by an Australian Research Council (ARC) Linkage (07-09) grant. Therefore, in addition to developing original research and contributing to the available knowledge of power electronics, it also contributes to the design of a DC-DC converter for specific application to the auxiliary power supply in electric trains. Specifically, in this regard, it contributes to the design of a 7.5 kW DC-DC converter for the industrial partner (Schaffler and Associates Ltd) who supported this project. As the thesis is formatted as a ‘thesis by publication’, the contents are organized around published papers. The research has resulted in eleven papers, including seven peer reviewed and published conference papers, one published journal paper, two journal papers accepted for publication and one submitted journal paper (provisionally accepted subject to few changes). In this research, several novel DC-DC converter topologies are introduced, analysed, and tested. The similarity of all of the topologies devised lies in their ‘current circulating’ switching state, which allows them to store some energy in the inductor, as extra inductor current. The stored energy may be applied to enhance the performance of the converter in the occurrence of load current or input voltage disturbances. In addition, when there is an alternating load current, the ability to store energy allows the converter to perform satisfactorily despite frequently and highly varying load current. In this research, the capability of current storage has been utilised to design topologies for specific applications, and the enhancement of the performance of the considered applications has been illustrated. The simplest DC-DC converter topology, which has a ‘current circulating’ switching state, is the Positive Buck-Boost (PBB) converter (also known as the non-inverting Buck-Boost converter). Usually, the topology of the PBB converter is operating as a Buck or a Boost converter in applications with widely varying input voltage or output reference voltage. For example, in electric railways (the application of our industrial partner), the overhead line voltage alternates from 1000VDC to 500VDC and the required regulated voltage is 600VDC. In the course of this research, our industrial partner (Schaffler and Associates Ltd) industrialized a PBB converter–the ‘Mudo converter’–operating at 7.5 kW. Programming the onboard DSP and testing the PBB converter in experimental and nominal power and voltage was part of this research program. In the earlier stages of this research, the advantages and drawbacks of utilization of the ‘current circulating’ switching state in the positive Buck-Boost converter were investigated. In brief, the advantages were found to be robustness against input voltage and current load disturbances, and the drawback was extra conduction and switching loss. Although the robustness against disturbances is desirable for many applications, the price of energy loss must be minimized to attract attention to the utilization of the PBB converter. In further stages of this research, two novel control strategies for different applications were devised to minimise the extra energy loss while the advantages of the positive Buck-Boost converter were fully utilized. The first strategy is Smart Load Controller (SLC) for applications with pre-knowledge or predictability of input voltage and/or load current disturbances. A convenient example of these applications is electric/hybrid cars where a master controller commands all changes in loads and voltage sources. Therefore, the master controller has a pre-knowledge of the load and input voltage disturbances so it can apply the SLC strategy to utilize robustness of the PBB converter. Another strategy aiming to minimise energy loss and maximise the robustness in the face of disturbance is developed to cover applications with unexpected disturbances. This strategy is named Dynamic Hysteresis Band (DHB), and is used to manipulate the hysteresis band height after occurrence of disturbance to reduce dynamics of the output voltage. When no disturbance has occurred, the PBB converter works with minimum inductor current and minimum energy loss. New topologies based on the PBB converter have been introduced to address input voltage disturbances for different onboard applications. The research shows that the performance of applications of symmetrical/asymmetrical multi-level diode-clamped inverters, DC-networks, and linear-assisted RF amplifiers may be enhanced by the utilization of topologies based on the PBB converter. Multi-level diode-clamped inverters have the problem of DC-link voltage balancing when the power factor of their load closes to unity. This research has shown that this problem may be solved with a suitable multi-output DC-DC converter supplying DClink capacitors. Furthermore, the multi-level diode-clamped inverters supplied with asymmetrical DC-link voltages may improve the quality of load voltage and reduce the level of Electromagnetic Interference (EMI). Mathematical analyses and experiments on supplying symmetrical and asymmetrical multi-level inverters by specifically designed multi-output DC-DC converters have been reported in two journal papers. Another application in which the system performance can be improved by utilization of the ‘current circulating’ switching state is linear-assisted RF amplifiers in communicational receivers. The concept of ‘linear-assisted’ is to divide the signal into two frequency domains: low frequency, which should be amplified by a switching circuit; and the high frequency domain, which should be amplified by a linear amplifier. The objective is to minimize the overall power loss. This research suggests using the current storage capacity of a PBB based converter to increase its bandwidth, and to increase the domain of the switching converter. The PBB converter addresses the industrial demand for a DC-DC converter for the application of auxiliary power supply of a typical electric train. However, after testing the industrial prototype of the PBB converter, there were some voltage and current spikes because of switching. To attenuate this problem without significantly increasing the switching loss, the idea of Active Gate Signalling (AGS) is presented. AGS suggests a smart gate driver that selectively controls the switching process to reduce voltage/current spikes, without unacceptable reduction in the efficiency of switching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel topology to generate high voltage with utilization of slow and fast power switches. New concepts used in this topology include numbers of diode-capacitor units in parallel with resonant circuits which are connected to a positive buck-boost converter. The resonant circuit reverses the voltage polarity of the capacitors. This configuration has capability of generating a flexible high voltage with certain number of capacitors. The advantage of this topology is to use slow switches, less number of diodes and capacitors compare to Marx generator. Simulations have been performed to verify the proposed topology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a high voltage pulsed power system based on low voltage switch-capacitor units connected to a current source for several applications such as plasma systems. A modified positive buck-boost converter topology is used to utilize the current source concept and a series of low voltage switch-capacitor units is connected to the current source in order to provide high voltage with high voltage stress (dv/dt) as demanded by loads. This pulsed power converter is flexible in terms of energy control, in that the stored energy in the current source can be adjusted by changing the current magnitude to significantly improve the efficiency of various systems with different requirements. Output voltage magnitude and stress (dv/dt) can be controlled by a proper selection of components and control algorithm to turn on and off switching devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel topology for the generation of high voltage pulses that uses both slow and fast solid-state power switches. This topology includes diode-capacitor units in parallel with commutation circuits connected to a positive buck-boost converter. This enables the generation of a range of high output voltages with a given number of capacitors. The advantages of this topology are the use of slow switches and a reduced number of diodes in comparison with conventional Marx generator. Simulations performed for single and repetitive pulse generation and experimental tests of a prototype hardware verify the proposed topology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the ultrasonic velocity measurement method which investigates the possible effects of high voltage high frequency pulsed power on cortical bone material elasticity. Before applying a pulsed power signal on a live bone, it is essential to determine the safe parameters of pulsed power applied on bone non-destructively. Therefore, the possible changes in cortical bone material elasticity due to a specified pulsed power excitation have been investigated. A controllable positive buck-boost converter with adjustable output voltage and frequency has been used to generate high voltage pulses (500V magnitude at 10 KHz frequency). To determine bone elasticity, an ultrasonic velocity measurement has been conducted on two groups of control (unexposed to pulse power but in the same environmental condition) and cortical bone samples exposed to pulsed power. Young’s modulus of cortical bone samples have been determined and compared before and after applying the pulsed power signal. After applying the high voltage pulses, no significant variation in elastic property of cortical bone specimens was found compared to the control. The result shows that pulsed power with nominated parameters can be applied on cortical bone tissue without any considerable negative effect on elasticity of bone material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last few decades, electric and electromagnetic fields have achieved important role as stimulator and therapeutic facility in biology and medicine. In particular, low magnitude, low frequency, pulsed electromagnetic field has shown significant positive effect on bone fracture healing and some bone diseases treatment. Nevertheless, to date, little attention has been paid to investigate the possible effect of high frequency, high magnitude pulsed electromagnetic field (pulse power) on functional behaviour and biomechanical properties of bone tissue. Bone is a dynamic, complex organ, which is made of bone materials (consisting of organic components, inorganic mineral and water) known as extracellular matrix, and bone cells (live part). The cells give the bone the capability of self-repairing by adapting itself to its mechanical environment. The specific bone material composite comprising of collagen matrix reinforced with mineral apatite provides the bone with particular biomechanical properties in an anisotropic, inhomogeneous structure. This project hypothesized to investigate the possible effect of pulse power signals on cortical bone characteristics through evaluating the fundamental mechanical properties of bone material. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses up to 500 V and 10 kHz. Bone shows distinctive characteristics in different loading mode. Thus, functional behaviour of bone in response to pulse power excitation were elucidated by using three different conventional mechanical tests applying three-point bending load in elastic region, tensile and compressive loading until failure. Flexural stiffness, tensile and compressive strength, hysteresis and total fracture energy were determined as measure of main bone characteristics. To assess bone structure variation due to pulse power excitation in deeper aspect, a supplementary fractographic study was also conducted using scanning electron micrograph from tensile fracture surfaces. Furthermore, a non-destructive ultrasonic technique was applied for determination and comparison of bone elasticity before and after pulse power stimulation. This method provided the ability to evaluate the stiffness of millimetre-sized bone samples in three orthogonal directions. According to the results of non-destructive bending test, the flexural elasticity of cortical bone samples appeared to remain unchanged due to pulse power excitation. Similar results were observed in the bone stiffness for all three orthogonal directions obtained from ultrasonic technique and in the bone stiffness from the compression test. From tensile tests, no significant changes were found in tensile strength and total strain energy absorption of the bone samples exposed to pulse power compared with those of the control samples. Also, the apparent microstructure of the fracture surfaces of PP-exposed samples (including porosity and microcracks diffusion) showed no significant variation due to pulse power stimulation. Nevertheless, the compressive strength and toughness of millimetre-sized samples appeared to increase when the samples were exposed to 66 hours high power pulsed electromagnetic field through screws with small contact cross-section (increasing the pulsed electric field intensity) compare to the control samples. This can show the different load-bearing characteristics of cortical bone tissue in response to pulse power excitation and effectiveness of this type of stimulation on smaller-sized samples. These overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electromagnetic field at 500 V and 10 kHz through capacitive coupling method, was athermal and did not damage the bone tissue construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single dc-ac inverter connected to a series string of pv panels, or many small dc-ac inverters which connect one or two panels directly to the ac grid. This paper proposes an alternative topology of nonisolated per-panel dc-dc converters connected in series to create a high voltage string connected to a simplified dc-ac inverter. This offers the advantages of a "converter-per-panel" approach without the cost or efficiency penalties of individual dc-ac grid connected inverters. Buck, boost, buck-boost, and Cu´k converters are considered as possible dc-dc converters that can be cascaded. Matlab simulations are used to compare the efficiency of each topology as well as evaluating the benefits of increasing cost and complexity. The buck and then boost converters are shown to be the most efficient topologies for a given cost, with the buck best suited for long strings and the boost for short strings. While flexible in voltage ranges, buck-boost, and Cu´k converters are always at an efficiency or alternatively cost disadvantage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many grid connected PV installations consist of a single series string of PV modules and a single DC-AC inverter. This efficiency of this topology can be enhanced with additional low power, low cost per panel converter modules. Most current flows directly in the series string which ensures high efficiency. However parallel Cúk or buck-boost DC-DC converters connected across each adjacent pair of modules now support any desired current difference between series connected PV modules. Each converter “shuffles” the desired difference in PV module currents between two modules and so on up the string. Spice simulations show that even with poor efficiency, these modules can make a significant improvement to the overall power which can be recovered from partially shaded PV strings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single DC-AC inverter connected to a series string of PV modules, or many small DC-AC inverters which connect one or two modules directly to the AC grid. This paper shows that a "converter-per-module" approach offers many advantages including individual module maximum power point tracking, which gives great flexibility in module layout, replacement, and insensitivity to shading; better protection of PV sources, and redundancy in the case of source or converter failure; easier and safer installation and maintenance; and better data gathering. Simple nonisolated per-module DC-DC converters can be series connected to create a high voltage string connected to a simplified DC-AC inverter. These advantages are available without the cost or efficiency penalties of individual DC-AC grid connected inverters. Buck, boost, buck-boost and Cuk converters are possible cascadable converters. The boost converter is best if a significant step up is required, such as with a short string of 12 PV modules. A string of buck converters requires many more modules, but can always deliver any combination of module power. The buck converter is the most efficient topology for a given cost. While flexible in voltage ranges, buck-boost and Cuk converters are always at an efficiency or alternatively cost disadvantage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck‑boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network causing the bone strength and toughness augmentation, it apparently did not affect the mineral phase of the cortical bone material. The results also confirmed that the indirect application of high power pulsed electric field at 500 V and 10 kHz through capacitive coupling method was safe and did not destroy the bone tissue construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study proposes a five-level Z-source diode-clamped inverter designed with two intermediate Z-source networks connected between the dc input sources and rear-end inverter circuitry. By partially shorting the Z-source networks, new operating states not previously reported for two-level Z-source inverter are introduced here for operating the proposed inverter with voltage buck-boost energy conversion ability and five-level phase voltage switching. These characteristic features are in fact always ensured at the inverter terminal output by simply adopting a properly designed carrier modulation scheme, which always inserts two partial shoot-through states per half carrier cycle for smooth balanced operation. Theoretical findings and practical issues identified are eventually verified by constructing a scaled down laboratory prototype for testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed generation (DG) systems are usually connected to the grid using power electronic converters. Power delivered from such DG sources depends on factors like energy availability and load demand. The converters used in power conversion do not operate with their full capacity all the time. The unused or remaining capacity of the converters could be used to provide some ancillary functions like harmonic and unbalance mitigation of the power distribution system. As some of these DG sources have wide operating ranges, they need special power converters for grid interfacing. Being a single-stage buck-boost inverter, recently proposed Z-source inverter (ZSI) is a good candidate for future DG systems. This paper presents a controller design for a ZSI-based DG system to improve power quality of distribution systems. The proposed control method is tested with simulation results obtained using Matlab/Simulink/PLECS and subsequently it is experimentally validated using a laboratory prototype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased awareness of environmental concerns has caused greater interest in developing power sources based on renewable technologies, such as wind. Due to the intermittent nature of the wind speed, output voltage and frequency of the direct driven permanent magnet synchronous generators (PMSG) are normally unsteady. Recently proposed Z-source inverter has been considered as a potential solution for grid interfacing wind power generators, thanks to buck-boost function that the single stage Z-source inverter can offer. Two control methodologies, namely unified controller for isolated operation and a multi-loop controller for grid interfaced operation are investigated in this paper. Theoretical analysis of these two control schemes is presented and experimental results to verify the effectiveness of the control method are also included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High power converters are used in variable speed induction motor drive applications. Riding through a short term power supply glitch is becoming an important requirement in these power converters. The power converter uses a large number of control circuit boards for its operation. The control power supply need to ensure that any glitch in the grid side does not affect any of these control circuit boards. A power supply failure of these control cards results in shut down of the entire system. The paper discusses the ride through system developed to overcome voltage sags and short duration outages at the power supply terminals of the control cards in these converters. A 240VA non-isolated, bi-directional buck-boost converter has been designed to be used along with a stack of ultracapacitors to achieve the same. A micro-controller based digital control platform made use of to achieve the control objective. The design of the ultracapacitor stack and the bidirectional converter is described the performance of the experimental set-up is evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses dynamic modeling of non-isolated DC-DC converters (buck, boost and buck-boost) under continuous and discontinuous modes of operation. Three types of models are presented for each converter, namely, switching model, average model and harmonic model. These models include significant non-idealities of the converters. The switching model gives the instantaneous currents and voltages of the converter. The average model provides the ripple-free currents and voltages, averaged over a switching cycle. The harmonic model gives the peak to peak values of ripple in currents and voltages. The validity of all these models is established by comparing the simulation results with the experimental results from laboratory prototypes, at different steady state and transient conditions. Simulation based on a combination of average and harmonic models is shown to provide all relevant information as obtained from the switching model, while consuming less computation time than the latter.