969 resultados para Algae population estimation
Resumo:
The impacts of Prorocentrum donghaiense Lu and Alexandrium catenella Balech, causative species of the large-scale HAB in the East China Sea, were studied under laboratory conditions. According to bloom densities, the effects of monoculture and mixture of the two species were examined on the egg-hatching success of Argopecten irradians Lamarck, and the population growth of Brachionus plicatilis Muller and Moina mongolica Daday. The results showed that monoculture of A. catenella had a significant inhibition on the egg hatching success of A. irradians, and the population growth of B. plicatilis and M. mongolica. The median effective densities ( EDSo) inhibiting the egg hatching success of A. irradians for 24 h and the population growth of B. plicatilis and M. mongolica for 96 h were 800, 630, and 2 400 cells/cm(3), respectively. Monoculture of P. donghaiense has no such inhibitory effect on the egg hatching success of A. irradians; P. donghaiense at lower suitable densities could sustain the population growth of B. plicatilis (1 x 10(4) similar to 3 x 10(4)cells/cm(3)) and M. mongolica (2 x 10(4) similar to 5 x 10(4) cells/cm(3)); P. doaghaiense at higher densities had significantly adverse effect on the population growth of B. plicatilis (4 x 10(4) similar to 10 x 10(4) cells/cm(3)) and M. mongolica (10 x 10(4) cells/cm(3)). When the two algae were mixed according to bloom densities, P. donghaiense at suitable densities to some extent could decrease the toxicity of A. catenella to B. plicatilis and M. mongolica. The results indicated that the large-scale HAB in the East China Sea could have adverse effect on zooplankton, and might further influence the marine ecosystem, especially when there was also Alexandrium bloom.
Resumo:
Background— Cardiovascular risk estimation by novel biomarkers needs assessment in disease-free population cohorts, followed up for incident cardiovascular events, assaying the serum and plasma archived at baseline. We report results from 2 cohorts in such a continuing study.
Methods and Results— Thirty novel biomarkers from different pathophysiological pathways were evaluated in 7915 men and women of the FINRISK97 population cohort with 538 incident cardiovascular events at 10 years (fatal or nonfatal coronary or stroke events), from which a biomarker score was developed and then validated in the 2551 men of the Belfast Prospective Epidemiological Study of Myocardial Infarction (PRIME) cohort (260 events). No single biomarker consistently improved risk estimation in FINRISK97 men and FINRISK97 women and the Belfast PRIME Men cohort after allowing for confounding factors; however, the strongest associations (with hazard ratio per SD in FINRISK97 men) were found for N-terminal pro-brain natriuretic peptide (1.23), C-reactive protein (1.23), B-type natriuretic peptide (1.19), and sensitive troponin I (1.18). A biomarker score was developed from the FINRISK97 cohort with the use of regression coefficients and lasso methods, with selection of troponin I, C-reactive protein, and N-terminal pro-brain natriuretic peptide. Adding this score to a conventional risk factor model in the Belfast PRIME Men cohort validated it by improved c-statistics (P=0.004) and integrated discrimination (P<0.0001) and led to significant reclassification of individuals into risk categories (P=0.0008).
Conclusions— The addition of a biomarker score including N-terminal pro-brain natriuretic peptide, C-reactive protein, and sensitive troponin I to a conventional risk model improved 10-year risk estimation for cardiovascular events in 2 middle-aged European populations. Further validation is needed in other populations and age groups.
Resumo:
On rocky shores, the relative importance of abiotic and biotic processes that regulate community structure are thought to vary with levels of shore exposure. This can lead to characteristic features found on sheltered and exposed shores. This study identified differences in the population structure of mussels on exposed and sheltered rocky shores on Atlantic coasts of south-west Ireland. Direct interactions between epibiotic algae and their host mussels were also examined to test if potential effects varied with shore exposure. Mussel beds on sheltered shores were less dense and comprised larger mussels with greater rates of individual survival and growth than those on exposed shores. The results of a field experiment showed that algal epibionts had a negative effect on mussel survival on sheltered shores but not on exposed shores. Surprisingly, the presence of algal epibionts had no effect on mussel growth on either shore type. These findings contrast with those of previous studies. The effects of shore exposure and algal epibionts on Mussels may be species-specific and may interact with other factors across different regions. This study shows that predictions of effects of exposure on mussel populations and their epibionts should only be based on specific experimental evidence and cannot be generalised across regions. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Summary: We present a new R package, diveRsity, for the calculation of various diversity statistics, including common diversity partitioning statistics (?, G) and population differentiation statistics (D, GST ', ? test for population heterogeneity), among others. The package calculates these estimators along with their respective bootstrapped confidence intervals for loci, sample population pairwise and global levels. Various plotting tools are also provided for a visual evaluation of estimated values, allowing users to critically assess the validity and significance of statistical tests from a biological perspective. diveRsity has a set of unique features, which facilitate the use of an informed framework for assessing the validity of the use of traditional F-statistics for the inference of demography, with reference to specific marker types, particularly focusing on highly polymorphic microsatellite loci. However, the package can be readily used for other co-dominant marker types (e.g. allozymes, SNPs). Detailed examples of usage and descriptions of package capabilities are provided. The examples demonstrate useful strategies for the exploration of data and interpretation of results generated by diveRsity. Additional online resources for the package are also described, including a GUI web app version intended for those with more limited experience using R for statistical analysis. © 2013 British Ecological Society.
Resumo:
Aims
Our aim was to test the prediction and clinical applicability of high-sensitivity assayed troponin I for incident cardiovascular events in a general middle-aged European population.
Methods and results
High-sensitivity assayed troponin I was measured in the Scottish Heart Health Extended Cohort (n = 15 340) with 2171 cardiovascular events (including acute coronary heart disease and probable ischaemic strokes), 714 coronary deaths (25% of all deaths), 1980 myocardial infarctions, and 797 strokes of all kinds during an average of 20 years follow-up. Detection rate above the limit of detection (LoD) was 74.8% in the overall population and 82.6% in men and 67.0% in women. Troponin I assayed by the high-sensitivity method was associated with future cardiovascular risk after full adjustment such as that individuals in the fourth category had 2.5 times the risk compared with those without detectable troponin I (P < 0.0001). These associations remained significant even for those individuals in whom levels of contemporary-sensitivity troponin I measures were not detectable. Addition of troponin I levels to clinical variables led to significant increases in risk prediction with significant improvement of the c-statistic (P < 0.0001) and net reclassification (P < 0.0001). A threshold of 4.7 pg/mL in women and 7.0 pg/mL in men is suggested to detect individuals at high risk for future cardiovascular events.
Conclusion
Troponin I, measured with a high-sensitivity assay, is an independent predictor of cardiovascular events and might support selection of at risk individuals.
Resumo:
Restriction site-associated DNA sequencing (RADseq) provides researchers with the ability to record genetic polymorphism across thousands of loci for nonmodel organisms, potentially revolutionizing the field of molecular ecology. However, as with other genotyping methods, RADseq is prone to a number of sources of error that may have consequential effects for population genetic inferences, and these have received only limited attention in terms of the estimation and reporting of genotyping error rates. Here we use individual sample replicates, under the expectation of identical genotypes, to quantify genotyping error in the absence of a reference genome. We then use sample replicates to (i) optimize de novo assembly parameters within the program Stacks, by minimizing error and maximizing the retrieval of informative loci; and (ii) quantify error rates for loci, alleles and single-nucleotide polymorphisms. As an empirical example, we use a double-digest RAD data set of a nonmodel plant species, Berberis alpina, collected from high-altitude mountains in Mexico.
Resumo:
The dispersal process, by which individuals or other dispersing agents such as gametes or seeds move from birthplace to a new settlement locality, has important consequences for the dynamics of genes, individuals, and species. Many of the questions addressed by ecology and evolutionary biology require a good understanding of species' dispersal patterns. Much effort has thus been devoted to overcoming the difficulties associated with dispersal measurement. In this context, genetic tools have long been the focus of intensive research, providing a great variety of potential solutions to measuring dispersal. This methodological diversity is reviewed here to help (molecular) ecologists find their way toward dispersal inference and interpretation and to stimulate further developments.
Resumo:
BACKGROUND: Recommendations for statin use for primary prevention of coronary heart disease (CHD) are based on estimation of the 10- year CHD risk. We compared the 10-year CHD risk assessments and eligibility percentages for statin therapy using three scoring algorithms currently used in Europe. METHODS: We studied 5683 women and men, aged 35-75, without overt cardiovascular disease (CVD), in a population-based study in Switzerland. We compared the 10-year CHD risk using three scoring schemes, i.e., the Framingham risk score (FRS) from the U.S. National Cholesterol Education Program's Adult Treatment Panel III (ATP III), the PROCAM scoring scheme from the International Atherosclerosis Society (IAS), and the European risk SCORE for low-risk countries, without and with extrapolation to 60 years as recommended by the European Society of Cardiology guidelines (ESC). With FRS and PROCAM, high-risk was defined as a 10- year risk of fatal or non-fatal CHD>20% and a 10-year risk of fatal CVD≥5% with SCORE. We compared the proportions of high-risk participants and eligibility for statin use according to these three schemes. For each guideline, we estimated the impact of increased statin use from current partial compliance to full compliance on potential CHD deaths averted over 10 years, using a success proportion of 27% for statins. RESULTS: Participants classified at high-risk (both genders) were 5.8% according to FRS and 3.0% to the PROCAM, whereas the European risk SCORE classified 12.5% at high-risk (15.4% with extrapolation to 60 years). For the primary prevention of CHD, 18.5% of participants were eligible for statin therapy using ATP III, 16.6% using IAS, and 10.3% using ESC (13.0% with extrapolation) because ESC guidelines recommend statin therapy only in high-risk subjects. In comparison with IAS, agreement to identify eligible adults for statins was good with ATP III, but moderate with ESC. Using a population perspective, a full compliance with ATP III guidelines would reduce up to 17.9% of the 24′ 310 CHD deaths expected over 10 years in Switzerland, 17.3% with IAS and 10.8% with ESC (11.5% with extrapolation). CONCLUSIONS: Full compliance with guidelines for statin therapy would result in substantial health benefits, but proportions of high-risk adults and eligible adults for statin use varied substantially depending on the scoring systems and corresponding guidelines used for estimating CHD risk in Europe.
Resumo:
Models developed to identify the rates and origins of nutrient export from land to stream require an accurate assessment of the nutrient load present in the water body in order to calibrate model parameters and structure. These data are rarely available at a representative scale and in an appropriate chemical form except in research catchments. Observational errors associated with nutrient load estimates based on these data lead to a high degree of uncertainty in modelling and nutrient budgeting studies. Here, daily paired instantaneous P and flow data for 17 UK research catchments covering a total of 39 water years (WY) have been used to explore the nature and extent of the observational error associated with nutrient flux estimates based on partial fractions and infrequent sampling. The daily records were artificially decimated to create 7 stratified sampling records, 7 weekly records, and 30 monthly records from each WY and catchment. These were used to evaluate the impact of sampling frequency on load estimate uncertainty. The analysis underlines the high uncertainty of load estimates based on monthly data and individual P fractions rather than total P. Catchments with a high baseflow index and/or low population density were found to return a lower RMSE on load estimates when sampled infrequently than those with a tow baseflow index and high population density. Catchment size was not shown to be important, though a limitation of this study is that daily records may fail to capture the full range of P export behaviour in smaller catchments with flashy hydrographs, leading to an underestimate of uncertainty in Load estimates for such catchments. Further analysis of sub-daily records is needed to investigate this fully. Here, recommendations are given on load estimation methodologies for different catchment types sampled at different frequencies, and the ways in which this analysis can be used to identify observational error and uncertainty for model calibration and nutrient budgeting studies. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Inferring population admixture from genetic data and quantifying it is a difficult but crucial task in evolutionary and conservation biology. Unfortunately state-of-the-art probabilistic approaches are computationally demanding. Effectively exploiting the computational power of modern multiprocessor systems can thus have a positive impact to Monte Carlo-based simulation of admixture modeling. A novel parallel approach is briefly described and promising results on its message passing interface (MPI)-based C implementation are reported.
Resumo:
Estimation of population size with missing zero-class is an important problem that is encountered in epidemiological assessment studies. Fitting a Poisson model to the observed data by the method of maximum likelihood and estimation of the population size based on this fit is an approach that has been widely used for this purpose. In practice, however, the Poisson assumption is seldom satisfied. Zelterman (1988) has proposed a robust estimator for unclustered data that works well in a wide class of distributions applicable for count data. In the work presented here, we extend this estimator to clustered data. The estimator requires fitting a zero-truncated homogeneous Poisson model by maximum likelihood and thereby using a Horvitz-Thompson estimator of population size. This was found to work well, when the data follow the hypothesized homogeneous Poisson model. However, when the true distribution deviates from the hypothesized model, the population size was found to be underestimated. In the search of a more robust estimator, we focused on three models that use all clusters with exactly one case, those clusters with exactly two cases and those with exactly three cases to estimate the probability of the zero-class and thereby use data collected on all the clusters in the Horvitz-Thompson estimator of population size. Loss in efficiency associated with gain in robustness was examined based on a simulation study. As a trade-off between gain in robustness and loss in efficiency, the model that uses data collected on clusters with at most three cases to estimate the probability of the zero-class was found to be preferred in general. In applications, we recommend obtaining estimates from all three models and making a choice considering the estimates from the three models, robustness and the loss in efficiency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
This article introduces a new general method for genealogical inference that samples independent genealogical histories using importance sampling (IS) and then samples other parameters with Markov chain Monte Carlo (MCMC). It is then possible to more easily utilize the advantages of importance sampling in a fully Bayesian framework. The method is applied to the problem of estimating recent changes in effective population size from temporally spaced gene frequency data. The method gives the posterior distribution of effective population size at the time of the oldest sample and at the time of the most recent sample, assuming a model of exponential growth or decline during the interval. The effect of changes in number of alleles, number of loci, and sample size on the accuracy of the method is described using test simulations, and it is concluded that these have an approximately equivalent effect. The method is used on three example data sets and problems in interpreting the posterior densities are highlighted and discussed.
Resumo:
Acanthonyx scutiformis, an endemic species in the Brazilian coast, is commonly found in intertidal rocky-shore algal communities. This study analyzes the population biology of A. scutiformis from Ubatuba region. A total of 371 specimens were collected over one year. Size range was 4.2[long dash]12.7 mm CW (carapace width) for females and 3.7[long dash]15.8 mm CW for males. Females predominated in intermediate size classes, whereas males prevailed in the largest ones. The estimated size when 50% crabs were mature was 10.7 mm CW for males and 8.9 mm CW for females. Sex ratio varied among the demographic groups. The processes that influence A. scutiformis population structure can be related to the different times males and females reach sexual maturity and probably to the distinct predation pressures on each sex during the adult phase.
Resumo:
A partir de perfis populacionais experimentais de linhagens do díptero forídeo Megaselia scalaris, foi determinado o número mínimo de perfis amostrais que devem ser repetidos, via processo de simulação bootstrap, para se ter uma estimativa confiável do perfil médio populacional e apresentar estimativas do erro-padrão como medida da precisão das simulações realizadas. Os dados originais são provenientes de populações experimentais fundadas com as linhagens SR e R4, com três réplicas cada, e que foram mantidas por 33 semanas pela técnica da transferência seriada em câmara de temperatura constante (25 ± 1,0ºC). A variável usada foi tamanho populacional e o modelo adotado para cada perfíl foi o de um processo estocástico estacionário. Por meio das simulações, os perfis de três populações experimentais foram amplificados, determinando-se, dessa forma, o tamanho mínimo de amostra. Fixado o tamanho de amostra, simulações bootstrap foram realizadas para construção de intervalos de confiança e comparação dos perfis médios populacionais das duas linhagens. Os resultados mostram que com o tamanho de amostra igual a 50 inicia-se o processo de estabilização dos valores médios.