927 resultados para Adjacent zone
Resumo:
A Ca2+-dependent synaptic vesicle-recycling pathway emanating from the plasma membrane adjacent to the dense body at the active zone has been demonstrated by blocking pinch-off of recycling membrane by using the Drosophila mutant, shibire. Exposure of wild-type Drosophila synapses to low Ca2+/high Mg2+ saline is shown here to block this active zone recycling pathway at the stage in which invaginations of the plasma membrane develop adjacent to the dense body. These observations, in combination with our previous demonstration that exposure to high Ca2+ causes “docked” vesicles to accumulate in the identical location where active zone endocytosis occurs, suggest the possibility that a vesicle-recycling pathway emanating from the active zone may exist that is stimulated by exposure to elevated Ca2+, thereby causing an increase in vesicle recycling, and is suppressed by exposure to low Ca2+ saline, thereby blocking newly forming vesicles at the invagination stage. The presence of a Ca2+-dependent endocytotic pathway at the active zone opens up the following possibilities: (i) electron microscopic omega-shaped images (and their equivalent, freeze fracture dimples) observed at the active zone adjacent to the dense body could represent endocytotic images (newly forming vesicles) rather than exocytotic images; (ii) vesicles observed attached to the plasma membrane adjacent to the dense body could represent newly formed vesicles rather than vesicles “docked” for release of transmitter.
Resumo:
New dredge-disposal techniques may serve the dual role of aiding sand by-passing across coastal inlets, and beach nourishment, provided the dredged sediments placed seaward of the surf zone move shoreward into that zone. During the summer of 1976, 26,750 cubic meters of relatively coarse sediment was dredged from New River Inlet, North Carolina, moved down coast by a split-hull barge, and placed in a 215-meter coastal reach between the 2- and 4-meter depth contours. Bathymetric changes on the disposal piles and in the adjacent beach and nearshore area were studied for a 13-week period (August to November 1976) to determine the modification of the surrounding beach and nearshore profile, and the net transport direction of the disposal sediment. The sediment piles initially created a local shoal zone with minimum depths of 0.6 meter. Disposal sediment was coarser (Mn = 0.49 millimeter) than the native sand at the disposal site (Mn = 0.14 millimeter) and coarser than the composite mean grain size of the entire profile (Mn = 0.21 millimeter). Shoaling and breaking waves caused rapid erosion of the pile tops and a gradual coalescing of the piles to form a disposal bar located seaward (= 90 meters) of a naturally occurring surf zone bar. As the disposal bar relief was reduced, the disposal bar-associated breaker zone was restricted to low tide times or periods of high wave conditions.
Resumo:
Geochemical and geophysical approaches have been used to investigate the freshwater and saltwater dynamics in the coastal Biscayne Aquifer and Biscayne Bay. Stable isotopes of oxygen and hydrogen, and concentrations of Sr2+ and Ca2+ were combined in two geochemical mixing models to provide estimates of the various freshwater inputs (precipitation, canal water, and groundwater) to Biscayne Bay and the coastal canal system in South Florida. Shallow geophysical electromagnetic and direct current resistivity surveys were used to image the geometry and stratification of the saltwater mixing zone in the near coastal (less than 1km inland) Biscayne Aquifer. The combined stable isotope and trace metal models suggest a ratio of canal input-precipitation-groundwater of 38%–52%–10% in the wet season and 37%–58%–5% in the dry season with an error of 25%, where most (20%) of the error was attributed to the isotope regression model, while the remaining 5% error was attributed to the Sr2+/Ca2+ mixing model. These models suggest rainfall is the dominate source of freshwater to Biscayne Bay. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for less than 2% of the total input. A similar Sr 2+/Ca2+ tracer model indicates precipitation is the dominate source in 9 out of 10 canals that discharge into Biscayne Bay. The two-component mixing model converged for 100% of the freshwater canal samples in this study with 63% of the water contributed to the canals coming from precipitation and 37% from groundwater inputs ±4%. There was a seasonal shift from 63% precipitation input in the dry season to 55% precipitation input in the wet season. The three end-member mixing model converged for only 60% of the saline canal samples possibly due to non-conservative behavior of Sr2+ and Ca2+ in saline groundwater discharging into the canal system. Electromagnetic and Direct Current resistivity surveys were successful at locating and estimating the geometry and depth of the freshwater/saltwater interface in the Biscayne Aquifer at two near coastal sites. A saltwater interface that deepened as the survey moved inland was detected with a maximum interpreted depth to the interface of 15 meters, approximately 0.33 km inland from the shoreline. ^
Resumo:
Extensive portions of the southern Everglades are characterized by series of elongated, raised peat ridges and tree islands oriented parallel to the predominant flow direction, separated by intervening sloughs. Tall herbs or woody species are associated with higher elevations and shorter emergent or floating species are associated with lower elevations. The organic soils in this “Ridge-and-Slough” landscape have been stable over millennia in many locations, but degrade over decades under altered hydrologic conditions. We examined soil, pore water, and leaf phosphorus (P) and nitrogen (N) distributions in six Ridge and Slough communities in Shark Slough, Everglades National Park. We found P enrichment to increase and N to decrease monotonically along a gradient from the most persistently flooded sloughs to rarely flooded ridge environments, with the most dramatic change associated with the transition from marsh to forest. Leaf N:P ratios indicated that the marsh communities were strongly P-limited, while data from several forest types suggested either N-limitation or co-limitation by N and P. Ground water stage in forests exhibited a daytime decrease and partial nighttime recovery during periods of surface exposure. The recovery phase suggested re-supply from adjacent flooded marshes or the underlying aquifer, and a strong hydrologic connection between ridge and slough. We therefore developed a simple steady-state model to explore a mechanism by which a phosphorus conveyor belt driven by both evapotranspiration and the regional flow gradient can contribute to the characteristic Ridge and Slough pattern. The model demonstrated that evapotranspiration sinks at higher elevations can draw in low concentration marsh waters, raising local soil and water P concentrations. Focusing of flow and nutrients at the evapotranspiration zone is not strong enough to overcome the regional gradient entirely, allowing the nutrient to spread downstream and creating an elongated concentration plume in the direction of flow. Our analyses suggest that autogenic processes involving the effects of initially small differences in topography, via their interactions with hydrology and nutrient availability, can produce persistent physiographic patterns in the organic sediments of the Everglades.
Resumo:
Les polygones à coin de glace sont très répandus dans la zone du pergélisol continu. Lorsque le ruissellement d’eau de fonte nivale s’infiltre de façon concentrée dans une cavité, il peut initier le processus de thermo-érosion du pergélisol (notamment des coins de glace) pouvant mener à la formation de ravins. Dans la vallée de Qalikturvik sur l’Ile Bylot (NU, Canada), le développement de ravins de thermo-érosion dans un milieu de polygones à coins de glace entraîne comme impact : i. la réorganisation des réseaux de drainage impliquant un assèchement des milieux humides en marge des chenaux d’érosion, ii. des variations dans le régime thermique et de l’humidité de proche-surface et iii. la prise en charge et le déplacement des sédiments vers l’extérieur du bassin-versant. L’objectif de cette thèse vise à approfondir les connaissances géomorphologiques propres au ravinement par thermo-érosion, d’examiner, caractériser et quantifier les impacts du ravinement (tel que sus-mentionné en i. ii. iii.) et le rôle de celui-ci dans une optique d’évolution du paysage périglaciaire à l’échelle temporelle de l’année à la décennie. Les ravins sont dynamiques : un ravin en particulier déclenché en 1999 et étudié depuis s’érodait à une vitesse de 38 à 50 m/a durant sa première décennie d’existence, pour atteindre une longueur totale de ~750 m et une surface érodée de ~25 000 m² en 2009. Des puits sont localisés près des zones de ravinement actives ; des levées alluviale, mares et polygones effondrés dans les zones stabilisées post-perturbation. Sur la terrasse de polygones recouvrant le plancher de la vallée au site à l’étude, 35 ravins furent identifiés et 1401 polygones furent perturbés avec 200 000 m³ de sols transportés. Une amélioration du drainage, une dégradation de la capacité de rétention de l’humidité, une transition d’un écoulement de ruissellement vers un écoulement canalisé caractérise les aires ravinées et leurs environs. Les polygones intacts sont homogènes d’un à l’autre et dans leurs centres ; les polygones perturbés ont une réponse hétérogène (flore, humidité et régime thermique). Les milieux érodés hétérogènes succèdent aux milieux homogènes et deviennent le nouvel état d’équilibre pour plusieurs décennies.
Resumo:
Multiple layers of sapropels occur widely in the sedimentary record of the Mediterranean Sea and record repetitions of paleoclimatic conditions that favored increased production and preservation of marine organic matter. A combination of hydrogen and carbon isotope analyses of Pleistocene sapropels from the Tyrrhenian Sea reveals new aspects of the factors leading to their deposition. Organic matter dD values that are significantly more negative in sapropels than in adjacent marls indicate a combination of dilution of surface waters by meteoric waters and increased burial of lipid-rich organic matter during periods of sapropel deposition. Organic d13C values in sapropels that are less negative than those in marls suggest periods of markedly elevated marine biological production. The opposite but concordant excursions of these two isotopic parameters imply that the sapropel layers formed from increased export of marine organic matter from the photic zone to the sea floor during periods of greater fluvial delivery of continental nutrients to the Mediterranean Sea. Furthermore, the isotopic evidence indicates that periods of wetter climate were widespread in southern Europe at the same times as in northern Africa.
Resumo:
Les polygones à coin de glace sont très répandus dans la zone du pergélisol continu. Lorsque le ruissellement d’eau de fonte nivale s’infiltre de façon concentrée dans une cavité, il peut initier le processus de thermo-érosion du pergélisol (notamment des coins de glace) pouvant mener à la formation de ravins. Dans la vallée de Qalikturvik sur l’Ile Bylot (NU, Canada), le développement de ravins de thermo-érosion dans un milieu de polygones à coins de glace entraîne comme impact : i. la réorganisation des réseaux de drainage impliquant un assèchement des milieux humides en marge des chenaux d’érosion, ii. des variations dans le régime thermique et de l’humidité de proche-surface et iii. la prise en charge et le déplacement des sédiments vers l’extérieur du bassin-versant. L’objectif de cette thèse vise à approfondir les connaissances géomorphologiques propres au ravinement par thermo-érosion, d’examiner, caractériser et quantifier les impacts du ravinement (tel que sus-mentionné en i. ii. iii.) et le rôle de celui-ci dans une optique d’évolution du paysage périglaciaire à l’échelle temporelle de l’année à la décennie. Les ravins sont dynamiques : un ravin en particulier déclenché en 1999 et étudié depuis s’érodait à une vitesse de 38 à 50 m/a durant sa première décennie d’existence, pour atteindre une longueur totale de ~750 m et une surface érodée de ~25 000 m² en 2009. Des puits sont localisés près des zones de ravinement actives ; des levées alluviale, mares et polygones effondrés dans les zones stabilisées post-perturbation. Sur la terrasse de polygones recouvrant le plancher de la vallée au site à l’étude, 35 ravins furent identifiés et 1401 polygones furent perturbés avec 200 000 m³ de sols transportés. Une amélioration du drainage, une dégradation de la capacité de rétention de l’humidité, une transition d’un écoulement de ruissellement vers un écoulement canalisé caractérise les aires ravinées et leurs environs. Les polygones intacts sont homogènes d’un à l’autre et dans leurs centres ; les polygones perturbés ont une réponse hétérogène (flore, humidité et régime thermique). Les milieux érodés hétérogènes succèdent aux milieux homogènes et deviennent le nouvel état d’équilibre pour plusieurs décennies.
Resumo:
Aim: To evaluate the effects of 10% NaOCl gel application on the dentin bond strengths and morphology of resin-dentin interfaces formed by three adhesives. Methods: Two etch-and-rinse adhesives (One-Step Plus, Bisco Inc. and Clearfil Photo Bond, Kuraray Noritake Dental) and one self-etch adhesive (Clearfil SE Bond, Kuraray Noritake Dental) were applied on dentin according to the manufacturers’ instructions or after the treatment with 10% NaOCl (ED-Gel, Kuraray Noritake Dental) for 60 s. For interfacial analysis, specimens were subjected to acid-base challenge and observed by SEM to identify the formation of the acid-base resistant zone (ABRZ). For microtensile bond strength, the same groups were investigated and the restored teeth were thermocycled (5,000 cycles) or not before testing. Bond strength data were subjected to two-way ANOVA and Tukey’s test (p<0.05). Results: NaOCl application affected the bond strengths for One-Step Plus and Clearfil Photo Bond. Thermocycling reduced the bond strengths for Clearfil Photo Bond and Clearfil SE Bond when used after NaOCl application and One-Step Plus when used as recommended by manufacturer. ABRZ was observed adjacent to the hybrid layer for self-etch primer. The etch-and-rinse systems showed external lesions after acid-base challenge and no ABRZ formation when applied according to manufacturer’s instructions. Conclusions: 10% NaOCl changed the morphology of the bonding interfaces and its use with etch-&-rinse adhesives reduced the dentin bond strength. Formation of ABRZ was material-dependent and the interface morphologies were different among the tested materials.
Resumo:
In Brazil, the consumption of extra-virgin olive oil (EVOO) is increasing annually, but there are no experimental studies concerning the phenolic compound contents of commercial EVOO. The aim of this work was to optimise the separation of 17 phenolic compounds already detected in EVOO. A Doehlert matrix experimental design was used, evaluating the effects of pH and electrolyte concentration. Resolution, runtime and migration time relative standard deviation values were evaluated. Derringer's desirability function was used to simultaneously optimise all 37 responses. The 17 peaks were separated in 19min using a fused-silica capillary (50μm internal diameter, 72cm of effective length) with an extended light path and 101.3mmolL(-1) of boric acid electrolyte (pH 9.15, 30kV). The method was validated and applied to 15 EVOO samples found in Brazilian supermarkets.
Resumo:
It is well known that trichomes protect plant organs, and several studies have investigated their role in the adaptation of plants to harsh environments. Recent studies have shown that the production of hydrophilic substances by glandular trichomes and the deposition of this secretion on young organs may facilitate water retention, thus preventing desiccation and favouring organ growth until the plant develops other protective mechanisms. Lychnophora diamantinana is a species endemic to the Brazilian 'campos rupestres' (rocky fields), a region characterized by intense solar radiation and water deficits. This study sought to investigate trichomes and the origin of the substances observed on the stem apices of L. diamantinana. Samples of stem apices, young and expanded leaves were studied using standard techniques, including light microscopy and scanning and transmission electron microscopy. Histochemical tests were used to identify the major groups of metabolites present in the trichomes and the hyaline material deposited on the apices. Non-glandular trichomes and glandular trichomes were observed. The material deposited on the stem apices was hyaline, highly hydrophilic and viscous. This hyaline material primarily consists of carbohydrates that result from the partial degradation of the cell wall of uniseriate trichomes. This degradation occurs at the same time that glandular trichomes secrete terpenoids, phenolic compounds and proteins. These results suggest that the non-glandular trichomes on the leaves of L. diamantinana help protect the young organ, particularly against desiccation, by deposition of highly hydrated substances on the apices. Furthermore, the secretion of glandular trichomes probably repels herbivore and pathogen attacks.
Resumo:
We investigated the influence of Pinus afforestation on the structure of leaf-litter ant communities in the southeastern Brazilian Atlantic Forest, studying an old secondary forest and a nearly 30 year-old never managed Pinus elliottii reforested area. A total of 12,826 individual ants distributed among 95 species and 32 genera were obtained from 50 1 m² samples/ habitat. Of these, 60 species were recorded in the pine plantation and 82 in the area of Atlantic forest; almost 50% of the species found in the secondary forest area were also present in the pine plantation. The number of species per sample was significantly higher in the secondary forest than in the pine plantation. Forest-adapted taxa are the most responsible for ant species richness differences between areas, and the pine plantation is richer in species classified as soil or litter omnivorous-dominants. The specialized ant predators registered in the pine plantation, as seven Dacetini, two Basiceros, two Attini and two Discothyrea, belong to widely distributed species. The NMDS (non-metric multidimensional scaling) ordination also suggested strong differences in similarity among samples of the two areas. Furthermore, this analysis indicated higher sample heterogeneity in the secondary forest, with two clusters of species, while in the pine plantation the species belong to a single cluster. We applied the ant mosaic hypothesis to explain the distribution of the leaf-litter fauna and spatial autocorrelation tests among samples. We argue that the results are likely related to differences in quality and distribution of the leaf-litter between the pine plantation and the secondary area.
Resumo:
A simple and fast capillary zone electrophoresis (CZE) method has been developed and validated for quantification of a non-nucleoside reverse transcriptase inhibitor (NNRTI) nevirapine, in pharmaceuticals. The analysis was optimized using 10 mmol L-1 sodium phosphate buffer pH 2.5, +25 kV applied voltage, hydrodynamic injection 0.5 psi for 5 s and direct UV detection at 200 µm. Diazepam (50.0 µg mL-1) was used as internal standard. Under these conditions, nevirapine was analyzed in approximately less than 2.5 min. The analytical curve presented a coefficient of correlation of 0.9994. Limits of detection and quantification were 1.4 µg mL-1 and 4.3 µg mL-1, respectively. Intra- and inter-day precision expressed as relative standard deviations were 1.4% and 1.3%, respectively and the mean recovery was 100.81%. The active pharmaceutical ingredient was subjected to hydrolysis (acid, basic and neutral) and oxidative stress conditions. No interference of degradation products and tablet excipients were observed. This method showed to be rapid, simple, precise, accurate and economical for determination of nevirapine in pharmaceuticals and it is suitable for routine quality control analysis since CE offers benefits in terms of quicker method development and significantly reduced operating costs.
Resumo:
Sandy beaches are among the most extensive environments in Brazil and are generally threatened by disorderly urban growth due to their location along the coast, where human populations tend to concentrate. This is especially true in southeastern Brazil, where the largest urban areas are located. Thus, better knowledge regarding these natural resources is of considerable importance. The surf zone of sandy beaches is inhabited by a number of fish species, including juveniles seeking both food and shelter from predators. An ecological survey was conducted in the surf zone of Itamambuca beach in the city of Ubatuba, São Paulo State, Brazil, in order to evaluate the composition, structure and dynamics of the fish fauna using community descriptors. Diurnal and nocturnal samples were taken with a beach seine at five oceanographic stations over a 12-month period. Water temperature and salinity were also recorded. A total of 2,147 individuals representing 34 species and 18 families were sampled. The main variation in fish fauna was detected on the diel level, followed by a spatial repartition possibly related to salinity. Seasonal variation was also observed. The five most important species in the overall context were Atherinella brasiliensis, Eucinostomus melanopterus, Mugil sp., Trachinotus goodei and Atherinella blackburni.
Resumo:
We report near-infrared spectroscopic observations of the Eta Carinae massive binary system during 2008-2009 using the CRIRES spectrograph mounted on the 8m UT 1 Very Large Telescope (VLT Antu). We detect a strong, broad absorption wing in He I lambda 10833 extending up to -1900 km s(-1) across the 2009.0 spectroscopic event. Analysis of archival Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet and optical data identifies a similar high-velocity absorption (up to -2100 km s(-1)) in the ultraviolet resonance lines of Si IV lambda lambda 1394, 1403 across the 2003.5 event. Ultraviolet resonance lines from low-ionization species, such as Si II lambda lambda 1527, 1533 and CII lambda lambda 1334, 1335, show absorption only up to -1200 km s(-1), indicating that the absorption with velocities -1200 to -2100 km s(-1) originates in a region markedly more rapidly moving and more ionized than the nominal wind of the primary star. Seeing-limited observations obtained at the 1.6m OPD/LNA telescope during the last four spectroscopic cycles of Eta Carinae (1989-2009) also show high-velocity absorption in He I lambda 10833 during periastron. Based on the large OPD/LNA dataset, we determine that material with velocities more negative than -900 km s(-1) is present in the phase range 0.976 <= phi <= 1.023 of the spectroscopic cycle, but absent in spectra taken at phi <= 0.947 and phi >= 1.049. Therefore, we constrain the duration of the high-velocity absorption to be 95 to 206 days (or 0.047 to 0.102 in phase). We propose that the high-velocity absorption component originates in shocked gas in the wind-wind collision zone, at distances of 15 to 45 AU in the line-of-sight to the primary star. With the aid of three-dimensional hydrodynamical simulations of the wind-wind collision zone, we find that the dense high-velocity gas is along the line-of-sight to the primary star only if the binary system is oriented in the sky such that the companion is behind the primary star during periastron, corresponding to a longitude of periastron of omega similar to 240 degrees-270 degrees. We study a possible tilt of the orbital plane relative to the Homunculus equatorial plane and conclude that our data are broadly consistent with orbital inclinations in the range i = 40 degrees-60 degrees.