988 resultados para Adenosine triphosphatase activity
Resumo:
RNA interference induced in insects after ingestion of plant-expressed hairpin RNA offers promise for managing devastating crop pests
Resumo:
Background Menstrual effluent affects mesothelial cell (MC) morphology. We evaluated whether these changes were consistent with epithelial-mesenchymal transitions (EMT). Methods Monolayer cultures of MC were incubated overnight in conditioned media, prepared from cells isolated form menstrual effluent, with or without kinase and ATP inhibitors. Changes in cell morphology were monitored using time-lapse video microscopy and immunohistochemistry. Effects on the expression of EMT-associated molecules were evaluated using real-time RT-PCR and/or Western blot analysis. Results Incubation in conditioned media disrupted cell-cell contacts, and increased MC motility. The changes were reversible. During the changes the distribution of cytokeratins, fibrillar actin and α-tubulin changed. Sodium azide, an inhibitor of ATP production, and Genistein, a general tyrosine kinase inhibitor, antagonized these effects. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, and SU6656, an Src tyrosine kinase inhibitor, only partially antagonized the effect. The expression of Snail and vimentin was markedly up-regulated, whereas the expression of E-cadherin was decreased and cytokeratins were altered. Conclusions In MC, menstrual effluent initiates a reversible, energy-dependent transition process from an epithelial to a mesenchymal phenotype. Involvement of the (Src) tyrosine kinase signalling pathway and the changes in the expression of cytokeratins, Snail, vimentin and E-cadherin demonstrate that the morphological changes are EMT.
Resumo:
Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.
Resumo:
Two variants of a simplified procedure for the isolation of plasma membrane fractions from monkey and rat brains, are described. The preparations show marked enrichments in the marker enzymes, (Na+-K+) adenosine triphosphatase, acetylcholinesterase, 5′-nucleotidase and adenylate cyclase. Lipid analysis and a protein electrophoretic pattern are presented. An enzymatic check has been made to assess for contamination by other cellular organelles. The amino acid composition of brain membrane proteins show a resemblance to the reported composition of erythrocyte ghost proteins but differ from myelin proteins.
Resumo:
Iron is an essential trace element for biological requirements of phytoplankton. Effects of iron on physiological and biochemical characteristics of Microcystis wesenbergii were conducted in this study. Results showed that 0.01 mu M [Fe3+] seriously inhibited growth and chlorophyll synthesis of M. wesenbergii, and induced temporary increase of ATPase activities, however, NR. ACP and ALP activities were restrained by iron limitation. Interestingly, iron addition on day 8 resulted in the gradual restoration of structures and functions of above enzymes and resisted a variety of stresses from iron limitation. M. wesenbergii in 10 mu M [Fe3+] treatment group grew normally. enzymes maintained normal levels, and residual phosphate contents in cultures first sharply decreased, then smoothly as M. wesenbergii has a characteristic of luxury consumption of phosphorus. Above parameters in 100 mu M [Fe3+] treatment group were almost same with those in 10 mu M [Fe3+] treatment group except for NR, ACP and ALP activities. In 100 mu M [Fe3+] treatment group, activities of ACP and ALP had temporary increase because phosphate and ferric iron could form insoluble compound - ferric phosphate (Fe3PO4) through adsorption effect. resulting in lack of bioavailable phosphate in culture media. The experiment suggested that too low or too high iron can affect obviously physiological and biochemical characteristics of M. wesenbergii.
Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase
Resumo:
Severe acute respiratory syndrome coronavirus (SARS-CoV), a newly identified group 2 coronavirus, is the causative agent of severe acute respiratory syndrome, a life-threatening form of pneumonia in humans. Coronavirus replication and transcription are highly specialized processes of cytoplasmic RNA synthesis that localize to virus-induced membrane structures and were recently proposed to involve a complex enzymatic machinery that, besides RNA-dependent RNA polymerase, helicase, and protease activities, also involves a series of RNA-processing enzymes that are not found in most other RNA virus families. Here, we characterized the enzymatic activities of a recombinant form of the SARS-CoV helicase (nonstructural protein [nsp] 13), a superfamily 1 helicase with an N-terminal zinc-binding domain. We report that nsp13 has both RNA and DNA duplex-unwinding activities. SARS-CoV nsp13 unwinds its substrates in a 5'-to-3' direction and features a remarkable processivity, allowing efficient strand separation of extended regions of double-stranded RNA and DNA. Characterization of the nsp13-associated (deoxy)nucleoside triphosphatase ([dNTPase) activities revealed that all natural nucleotides and deoxynucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed slightly more efficiently than other nucleotides. Furthermore, we established an RNA 5'-triphosphatase activity for the SARS-CoV nsp13 helicase which may be involved in the formation of the 5' cap structure of viral RNAs. The data suggest that the (d)NTPase and RNA 5'-triphosphatase activities of nsp13 have a common active site. Finally, we established that, in SARS-CoV-infected Vero E6 cells, nsp13 localizes to membranes that appear to be derived from the endoplasmic reticulum and are the likely site of SARS-CoV RNA synthesis.
Resumo:
Medium' alkaliniiation occurred -lipon the addition of L-Glu to mechanically isolated Asparagus sprenger-i mesophyll cells suspended in 1 mM CaS04. Alkalinization resulted from the coupled entry of H+ and L-Glu anion into the cells. This H+ IL-Glu symport did not stimulate K+ efflux. K+ efflux has been observed during H~ lamino acid symport in other systems. The stimulation of K+ efflux by proton coupled symport is regarded as an indicator of a plasma membrane depolarizing electrogenic symport process. H+ IL-Glu symport in Asparagus sprengerimesophyl1 cells was investigated to determine whether or not the process was electrogenic. The rate of uptake of 0.25 11M 3H-MTPP+ ( Methyltriphenylphosphonium, methyl-3H ) is a probe for monitoring changes in the membrane potential. 3HMTPP+ uptake was reduced by K+ or CCCP, agents known to depolarize the membrane potential. Uptake of 3H-MTPP+ was also inhibited by L-Glu but not by D-Glu. Conversely, 10 mM external MTPP+ inhibited the uptake of 14C-U-LGlu. Simultaneous measurements of the rates of 14C-U-L-Glu uptake and L-Glu dependent H+ influx showed that the molar stoichiometry of H+ IL-Glu symport was 2 to 1. K+ or Na+ stimulated H+ efflux was completely inhibited by DCCD, DES, oligomycin and antimycin reagents which inhibit ATP driven H+ efflux. The H+ efflux \Vas also stimulate.d by the weak acids, butyric acid and acetic acid, which are known fo-aCidify the cytoplasm. This weak acid stimulated H+ efflux was also completely inhibited by oligomycin. It was calculated that net L-Glu dependent H+ influx increased by 100% in the presence of oligomycin and that despite net medium alkalinization H+ IL-Glu symport stimulates ATP dependent H+ efflux. 11 The data presented in this study indicate that H+ IL-Glu symport is electrogenic. The data also show that ATP dependent Ht efflux rather than K+ efflux is the- process compensating for thi~ electrogenic H+ IL-Glu symport.
Resumo:
The aim of this work was to characterize the distribution of myofibers in the gluteus medius muscle of inactive horses of the Brasileiro de Hipismo (BH) breed at different ages by means of histochemical analyses, according to sex and depth of the biopsy. A total of 78 inactive horses (9 castrated males, 35 stallions, and 34 females) of the BH breed, aged 1 to 4 years, were used. A percutaneous muscle biopsy was obtained with a 6.0-mm Bergstrom-type needle, which allowed the removal of muscle fragments at depths of 20 and 60 mm. Myofiber types were determined based on myofibrillar adenosine triphosphatase (mATPase) and nicotinamide dinucleotide tetrazolium reductase (NADH-TR) techniques. Morphometry of the fibers was determined based on cross-sectional area (CSA), mean frequency (F), and relative cross-sectional area (RCSA). The current study demonstrated that BH horses 3 and 4 years of age show a greater percentage of, and area occupied by, type IIA fibers and lower percentage of type IIX fibers in the gluteus medius muscle compared with horses 1 and 2 years of age. No difference was found between sexes in the frequency of and area occupied by the different fiber types at any of the depths and ages studied. In this study, females showed a greater CSA for all fibers in comparison with males, at 1 year of age. The results of the current study indicate that the gluteus medius muscle of inactive BH horses shows modifications in its structural and biochemical composition during the growth of the animals, leading to a better oxidative capacity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of the present study was to investigate the effect of oral supplementation of creatine on the muscular responses to aerobic training. Twelve purebred Arabian horses were submitted to aerobic training for 90 d, with and without creatine supplementation, and evaluated with respect to BW and BCS and to the area and frequency of the different types of muscle fibers in the gluteus medius. Supplementation consisted of the daily administration of 75 g of creatine monohydrate mixed into the ration for the 90 d of training. Physical conditioning was conducted on a high-performance treadmill, and training intensity was stipulated by calculating the velocity at which blood lactate reaches 4 mmol/L, determined monthly for each animal. The individual intensity of physical force at 80% of aerobic threshold was established. Morphometry of glutens medius muscle fibers was performed on frozen sections processed for histochemical analysis of myosin adenosine triphosphatase and immunohistochemistry of slow-contracting myosin. The results demonstrated that the animals maintained a moderate BCS without alteration of BW during the course of training, providing evidence of equilibrium between food intake and caloric expenditure during the study period. The present study demonstrated that aerobic training for 90 d caused hypertrophy of fiber types I (P = 0.04), IIA (P = 0.04), and IIX (P = 0.01), as well as an increase in the relative area occupied by type I fibers (P = 0.02) at the expense of type IIX fibers (P = 0.03), resulting in modifications of the contractile and metabolic characteristics of the gluteus medius muscle. It was not possible to show any beneficial effect from creatine on the skeletal muscle characteristics examined.
Resumo:
The present study was conducted on vocal muscles removed at autopsy Rom adult individuals (10 men and 8 women, aes ranging from 48 to 78 years) with no laryngeal disease. Histologic analysis was performed with hematoxylin and eosin staining, and histochemical analysis was performed by nicotinamide-adenine-dinucleotide tetrazolium reductase, succinate dehydrogenase, and acid and alkaline myofibrillar adenosine triphosphatase reactions. The histochemical reactions showed that the muscle consists of slow-twitch oxidative (SO), fast-twitch glycolytic (FG), and fast-twitch glycolytic oxidative (FOG) fibers distributed in mosaic form. The frequencies of SO, FOG, and FG fibers were 40.50%, 54.75%, and 4.75%, respectively. The higher frequency of SO and FOG oxidative fibers characterizes the muscle as having aerobic metabolism, resistance to fatigue, and fast contraction. The mean minimum diameters were 31.37 mu m for SO fibers and 36.46 mu m for FOG and FG fibers.
Resumo:
The myotomal muscle of Synbranchus marmoratus was investigated using histochemical and immunohistochemical reactions. This musculature is composed of a superficial red compartment, uniformly distributed around the trunk circumferentially and also in the lateral line. The red compartment fibers are small in diameter and have an oxidative metabolism, a high rate of glycogen and a negative reaction to alkaline and acid myofibrillar ATPase (mATPase). The white muscle forms the bulk of the muscle mass. Its fibers are large in diameter and have a glycolytic metabolism, a negative reaction to glycogen, a strong reaction to alkaline mATPase and a negative reaction to acid mATPase. Between these two compartments there is an intermediate layer of fibers presenting a mosaic metabolism pattern with a high rate of glycogen. These fibers stained moderately for alkaline and acid m-ATPase. Several clusters of red muscles were observed inside the white muscle. Each cluster is composed of three fiber types, with a predominance of red and intermediate fibers. Reactivity to anti-MHC BA-D5 was positive only in the intermediate fibers. Reactivity to anti-MHC SC-71 was negative in all fiber types.
Resumo:
We reexamined the morphological and functional properties of the hyoid, the tongue pad, and hyolingual musculature in chameleons. Dissections and histological sections indicated the presence of five distinctly individualized pairs of intrinsic tongue muscles. An analysis of the histochemical properties of the system revealed only two fiber types in the hyolingual muscles: fast glycolytic and fast oxidative glycolytic fibers. In accordance with this observation, motor-endplate staining showed that all endplates are of the en-plaque type. All muscles show relatively short fibers and large numbers of motor endplates, indicating a large potential for fine muscular control. The connective tissue sheet surrounding the entoglossal process contains elastin fibers at its periphery, allowing for elastic recoil of the hyolingual system after prey capture. The connective tissue sheets surrounding the m. accelerator and m. hyoglossus were examined under polarized light. The collagen fibers in the accelerator epimysium are configured in a crossed helical array that will facilitate limited muscle elongation. The microstructure of the tongue pad as revealed by SEM showed decreased adhesive properties, indicating a change in the prey prehension mechanics in chameleons compared to agamid or iguanid lizards. These findings provide the basis for further experimental analysis of the hyolingual system. © 2001 Wiley-Liss, Inc.
Resumo:
Samples of the anterior and posterior regions of the masseter and temporal muscles and of the anterior belly of the digastric muscle of 4 adult male tufted capuchin monkeys (Cebus apella) were removed and stained with HE and submitted to the m-ATPase reaction (with alkaline and acid preincubation) and to the NADH-TR and SDH reactions. The results of the histoenzymologic reactions were similar, except for acid reversal which did not occur in fibers of the fast glycolytic (FG) type in the mandibular locomotor muscles. FG fibers had a larger area and were more frequent in all regions studied. No significant differences in frequency or area of each fiber type were detected, considering the anterior and posterior regions of the masseter and temporal muscles. The frequency of fibers of the fast oxidative glycolytic (FOG) and slow oxidative (SO) types and of FOG area differed significantly between the anterior belly of the digastric muscle and the mandibular locomotor muscle. The predominance of fast twitch (FG and FOG) fibers and the multipenniform and bipenniform internal architecture of the masseter and temporal muscles, respectively, are characteristics that permit the powerful bite typical of tufted capuchin monkeys.
Resumo:
A morphological and histochemical study of the human vestibular fold was carried out using routine histological techniques. Seven μm-thick histological sections stained with hematoxylin-eosin (HE) and Calleja showed the presence of elastic collagen fibers and seromucous glands in the vestibular fold. Muscle fibers forming the ventricular muscle were also identified. Ultrastructural analyses of the epithelial layer by scanning electron microscopy (SEM) revealed ciliated cells and gland ducts opening on the epithelial surface. Histochemical analyses were performed on ventricular muscles submitted to nicotinamide-adenine-dinucleotide tetrazolium reductase (NADH-TR), succinate dehydrogenase (SDH), and myofibrillar adenosine triphosphatase (mATPase) reactions. Based on these reactions, it was observed that the muscle is formed by three types of muscle fibers: slow-twitch oxidative (SO), fast-twitch oxydative glycolytic (FOG) and fast-twitch glycolytic (FG) fibers distributed in a mosaic pattern. The fiber frequency was 22.7%, 69.9% and 7.4%, respectively. The higher frequency of SO and FOG fibers characterized the muscle as having aerobic metabolism and resistance to fatigue. The ventricular muscle was considered fast. The study of the neuromuscular junctions performed after nonspecific esterase reaction showed that they are of the en-plaque type and have multiple occurrences in the ventricular muscle.