911 resultados para Addition of diborides and SiC
Resumo:
The print substrate influences the print result in dry toner electrophotography, which is a widely used digital printing method. The influence of the substrate can be seen more easily in color printing, as that is a more complex process compared to monochrome printing. However, the print quality is also affected by the print substrate in grayscale printing. It is thus in the interests of both substrate producers and printing equipment manufacturers to understand the substrate properties that influence the quality of printed images in more detail. In dry toner electrophotography, the image is printed by transferring charged toner particles to the print substrate in the toner transfer nip, utilizing an electric field, in addition to the forces linked to the contact between toner particles and substrate in the nip. The toner transfer and the resulting image quality are thus influenced by the surface texture and the electrical and dielectric properties of the print substrate. In the investigation of the electrical and dielectric properties of the papers and the effects of substrate roughness, in addition to commercial papers, controlled sample sets were made on pilot paper machines and coating machines to exclude uncontrolled variables from the experiments. The electrical and dielectric properties of the papers investigated were electrical resistivity and conductivity, charge acceptance, charge decay, and the dielectric permittivity and losses at different frequencies, including the effect of temperature. The objective was to gain an understanding of how the electrical and dielectric properties are affected by normal variables in papermaking, including basis weight, material density, filler content, ion and moisture contents, and coating. In addition, the dependency of substrate resistivity on the electric field applied was investigated. Local discharging did not inhibit transfer with the paper roughness levels that are normal in electrophotographic color printing. The potential decay of paper revealed that the charge decay cannot be accurately described with a single exponential function, since in charge decay there are overlapping mechanisms of conduction and depolarization of paper. The resistivity of the paper depends on the NaCl content and exponentially on moisture content although it is also strongly dependent on the electric field applied. This dependency is influenced by the thickness, density, and filler contents of the paper. Furthermore, the Poole-Frenkel model can be applied to the resistivity of uncoated paper. The real part of the dielectric constant ε’ increases with NaCl content and relative humidity, but when these materials cannot polarize freely, the increase cannot be explained by summing the effects of their dielectric constants. Dependencies between the dielectric constant and dielectric loss factor and NaCl content, temperature, and frequency show that in the presence of a sufficient amount of moisture and NaCl, new structures with a relaxation time of the order of 10-3 s are formed in paper. The ε’ of coated papers is influenced by the addition of pigments and other coating additives with polarizable groups and due to the increase in density. The charging potential decreases and the electrical conductivity, potential decay rate, and dielectric constant of paper increase with increasing temperature. The dependencies are exponential and the temperature dependencies and their activation energies are altered by the ion content. The results have been utilized in manufacturing substrates for electrophotographic color printing.
Resumo:
In vivo and in vitro experiments were conducted to determine digestibility of GE and nutrients, as well as DE and ME of carbohydrates fed to growing pigs. The objective of Exp. 1 was to determine the DE and ME of 4 novel carbohydrates fed to pigs. The 4 novel carbohydrates were 2 sources of resistant starch (RS 60 and RS 70), soluble corn fiber (SCF), and pullulan. These carbohydrates were produced to increase total dietary fiber (TDF) intake by humans. Maltodextrin (MD) was used as a highly digestible control carbohydrate. The DE and ME for RS 60 (1,779 and 1,903 kcal/kg, respectively), RS 75(1,784 and 1,677 kcal/kg, respectively), and SCF (1,936 and 1,712 kcal/kg, respectively) were less (P < 0.05) than for MD (3,465 and 3,344 kcal/kg, respectively) and pullulan (2,755 and 2,766 kcal/kg, respectively), and pullulan contained less (P < 0.05) DE and ME than MD. However, there was no difference in the DE and ME for RS 60, RS 75, and SCF. The varying degrees of small intestinal digestibility and differences in fermentability among these novel carbohydrates may explain the differences in the DE and ME among carbohydrates. Therefore, the objectives of Exp. 2 were to determine the effect of these 4 novel carbohydrates and cellulose on apparent ileal (AID) and apparent total tract (ATTD) disappearance, and hindgut disappearance (HGD) of GE, TDF, and nutrients when added to diets fed to ileal-cannulated pigs. The second objective was to measure the endogenous flow of TDF to be able to calculate the standardized ileal disappearance (SID) and standardized total tract (STTD) disappearance of TDF in the 4 novel fibers fed to pigs. Results of the experiment indicated that the AID of GE and DM in diets containing cellulose or the novel fibers was less (P < 0.05) than of the maltodextrin diet, but the ATTD of GE and DM was not different among diets. The addition of RS 60, RS 75, and SCF did not affect the AID of acid hydrolysed ether extract (AEE), CP, or ash, but the addition of cellulose and pullulan reduced (P < 0.01) the AID of CP. The average ileal and total tract endogenous losses of TDF were calculated to be 25.25 and 42.87 g/kg DMI, respectively. The SID of TDF in diets containing RS 60, SCF, and pullulan were greater (P < 0.01) than the SID of TDF in the cellulose diet, but the STTD of the SCF diet was greater (P < 0.05) than for the cellulose and pullulan diets. Results of this experiment indicate that the presence of TDF reduces small intestinal disappearance of total carbohydrates and energy which may reduce the DE and ME of diets and ingredients. Therefore, the objective of Exp. 3 was to determine the DE and ME in yellow dent corn, Nutridense corn, dehulled barley, dehulled oats, polished rice, rye, sorghum, and wheat fed to growing pigs and to determine the AID and ATTD of GE, OM, CP, AEE, starch, total carbohydrates, and TDF in these cereal grains fed to pigs. Results indicated that the AID of GE, OM, and total carbohydrates was greater (P < 0.001) in rice than in all other cereal grains. The AID of starch was also greater (P < 0.001) in rice than in yellow dent corn, dehulled barley, rye, and wheat. The ATTD of GE was greater (P < 0.001) in rice than in yellow dent corn, rye, sorghum, and wheat. With a few exceptions, the AID and ATTD of GE and nutrients in Nutridense corn was not different from the values for dehulled oats. Likewise, with a few exceptions, the AID, ATTD, and HGD of GE, OM, total carbohydrates, and TDF in yellow corn, sorghum, and wheat were not different from each other. The AID of GE and AEE in dehulled barley was greater (P < 0.001) than in rye. The ATTD of GE and most nutrients was greater (P < 0.001) in dehulled barley than in rye. Dehulled oats had the greatest (P < 0.001) ME (kcal/kg DM) whereas rye had the least ME (kcal/kg DM) among the cereal grains. Results of the experiment indicate that the presence of TDF and RS may reduce small intestinal digestibility of starch in cereal grains resulting in reduced DE and ME in these grains. Digestibility experiments involving animals are time consuming and expensive. Therefore, the objective of Exp. 4 was to correlate DM and OM digestibility obtained from 3 in vitro procedures with ATTD of GE and with the concentration of DE in 50 corn samples that were fed to growing pigs. The second objective was to develop a regression model that can predict the ATTD of GE or the concentration of DE in corn. The third objective was to evaluate the suitability of using the DaisyII incubator as an alternative to the traditional water bath when determining in vitro DM and OM digestibility. Results indicated that corn samples incubated with Viscozyme for 48 h in the DaisyII incubator improved (P < 0.001) the ability of the procedure to detect small differences in the ATTD of GE or to detect small differences in the concentration of DE in corn. Likewise, compared with using cellulase or fecal inoculum, the variability in the ATTD of GE and the variability in the DE in corn was better (R2 = 0.56; P < 0.05 and R2 = 0.53; P < 0.06, respectively) explained if Viscozyme was used than if cellulase or fecal inoculum was used. A validated regression model that predicted the DE in corn was developed using Viscozyme and with the corn samples incubated in the DaisyII incubator for a 48 h. In conclusion, this present work used the pig as a model for human gastrointestinal function and evaluates carbohydrates from 2 different nutritional perspectives – humans and animals. The addition of novel carbohydrates reduced the digestibility of energy in the diets without necessarily reducing the digestibility of other nutrients. Thus, supplementation of novel carbohydrates in the diets may be beneficial for the management of diabetes. Aside from diabetic management, cereal grains such as rye and sorghum, may also help in BW management because of there low caloric value, but for undernourished individuals, dehulled oats, dehulled barley, and rice are the ideal grains. From an animal nutrition standpoint, high concentration of dietary fiber is undesirable because it reduces feed efficiency. Therefore, the inclusion of feed ingredients that have a high concentration of dietary fiber is often limited in animal diets. Although in vivo determination is ideal, in vitro procedures are useful tools to determine caloric value of food and feed ingredients.
Resumo:
Remaining silicon in SiC-based materials produced via reactive infiltration limits their use in high-temperature applications due to the poor mechanical properties of silicon: low fracture toughness, extreme fragility and creep phenomena above 1000 °C. In this paper SiC–FeSi2 composites are fabricated by reactive infiltration of Si–Fe alloys into porous Cf/C preforms. The resulting materials are SiC/FeSi2 composites, in which remaining silicon is reduced by formation of FeSi2. For the richest Fe alloys (35 wt% Fe) a nominal residual silicon content below 1% has been observed. However this, the relatively poor mechanical properties (bending strength) measured for those resulting materials can be explained by the thermal mismatch of FeSi2 and SiC, which weakens the interface and does even generate new porosity, associated with a debonding phenomenon between the two phases.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT One of the current research trends in Enterprise Resource Planning (ERP) involves examining the critical factors for its successful implementation. However, such research is limited to system implementation, not focusing on the flexibility of ERP to respond to changes in business. Therefore, this study explores a combination system, made up of an ERP and informality, intended to provide organisations with efficient and flexible performance simultaneously. In addition, this research analyses the benefits and challenges of using the system. The research was based on socio-technical system (STS) theory which contains two dimensions: 1) a technical dimension which evaluates the performance of the system; and 2) a social dimension which examines the impact of the system on an organisation. A mixed method approach has been followed in this research. The qualitative part aims to understand the constraints of using a single ERP system, and to define a new system corresponding to these problems. To achieve this goal, four Chinese companies operating in different industries were studied, all of which faced challenges in using an ERP system due to complexity and uncertainty in their business environments. The quantitative part contains a discrete-event simulation study that is intended to examine the impact of operational performance when a company implements the hybrid system in a real-life situation. Moreover, this research conducts a further qualitative case study, the better to understand the influence of the system in an organisation. The empirical aspect of the study reveals that an ERP with pre-determined business activities cannot react promptly to unanticipated changes in a business. Incorporating informality into an ERP can react to different situations by using different procedures that are based on the practical knowledge of frontline employees. Furthermore, the simulation study shows that the combination system can achieve a balance between efficiency and flexibility. Unlike existing research, which emphasises a continuous improvement in the IT functions of an enterprise system, this research contributes to providing a definition of a new system in theory, which has mixed performance and contains both the formal practices embedded in an ERP and informal activities based on human knowledge. It supports both cost-efficiency in executing business transactions and flexibility in coping with business uncertainty.This research also indicates risks of using the system, such as using an ERP with limited functions; a high cost for performing informally; and a low system acceptance, owing to a shift in organisational culture. With respect to practical contribution, this research suggests that companies can choose the most suitable enterprise system approach in accordance with their operational strategies. The combination system can be implemented in a company that needs to operate a medium amount of volume and variety. By contrast, the traditional ERP system is better suited in a company that operates a high-level volume market, while an informal system is more suitable for a firm with a requirement for a high level of variety.
Resumo:
In this study, the influence of the processing conditions and the addition of trans-polyoctenylene rubber (TOR) on Mooney viscosity, tensile properties, hardness, tearing resistance, and resilience of natural rubber/styrene-butadiene rubber blends was investigated. The results obtained are explained in light of dynamic mechanical and morphological analyses. Increasing processing time produced a finer blend morphology, which resulted in an improvement in the mechanical properties. The addition of TOR involved an increase in hardness, a decrease in tear resistance, and no effect on the resilience. It resulted in a large decrease in the Mooney viscosity and a slight decrease in the tensile properties if the components of the compounds were not properly mixed. The results indicate that TOR acted more as a plasticizer than a compatibilizer. (c) 2008 Wiley Periodicals, Inc.
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
The synthesis of potassium 2-substituted-1,3-dithianotrifluoroborate salts and tetra-n-butyl ammonium derivatives is described. The reaction proceeds under mild reaction conditions and the corresponding products were obtained in moderate to good yields. The reactivity of these compounds in rections with chiral cyclic N-acyliminium ions was evaluated.
Resumo:
This paper presents a theoretical and experimental investigation into the oxidation reactions of Si3N4-bonded SiC ceramics. Such ceramics which contain a small amount of silicon offer increased oxidation and wear resistance and are widely used as lining refractories in blast furnaces. The thermodynamics of oxidation reactions were studied using the JANAF tables. The weight gain was measured using a thermogravimetric analysis technique to study the kinetics. The temperature range of oxidation measurements is from 1073 to 1573 K and the oxidation atmosphere is water vapour, pure CO and CO-CO2 gas mixtures with various CO-to-CO2 ratios. Thermodynamic simulations showed that the oxidation mechanism of Si3N4-bonded SiC ceramics is passive oxidation and all components contribute to the formation of a silica film. The activated energies of the reactions follow the sequence Si3N4>SiC>Si. The kinetic study revealed that the oxidation of Si3N4-bonded SiC ceramics occurred in a mixed regime controlled by both interface reaction and diffusion through the silica film. Under the atmosphere conditions prevailing in the blast furnace, this ceramic is predicted to be passively oxidized with the chemical reaction rate becoming more dominant as the CO concentration increases. (C) 1998 Chapman & Hall.
Resumo:
First of all, we would like to clarify that the passive to active transition was determined not by using Solgasmix [1], but by combining thermodynamic equilibrium and mass balance for the oxidation of SiC under pure CO2 and pure CO. The model used in our paper [2]was an extension ofWagner’s model [3], in a similar way as Balat et al. [4] did for the oxidation of SiC in oxygen.
Resumo:
Objective To evaluate the effect of the addition of methyltestosterone to estrogen and progestogen therapy on postmenopausal sexual energy and orgasm. Methods Sixty postmenopausal women in a stable relationship with a partner capable of intercourse, and presenting sexual complaints that appeared after menopause, were randomly divided into two groups: EP (n=29) received one tablet of equine estrogens (CEE) 0.625mg plus medroxyprogesterone acetate (MPA) 2.5mg and one capsule of placebo; EP+A (n=31) received one tablet of CEE 0.625mg plus MPA 2.5mg and one capsule of methyltestosterone 2.0mg; The treatment period was 12 months. The effects of treatment on sexual energy were assessed using the Sexual Energy Change Scale. The ability to reach orgasm in sexual relations with the partner was verified through monthly calendars and by calculating the ratio between monthly frequency of orgasms in sexual relations and monthly sexual frequency. Results There was a significant relationship between improvement in level of sexual energy and the addition of methyltestosterone to CEE/MPA treatment (p=0.021). No significant effect on orgasmic capacity was noted after the treatment period. Conclusion Addition of methyltestosterone to CEE/MPA therapy may increase sexual energy, but might not affect the ability to obtain orgasm in sexual relations.
Resumo:
A perennial problem in recombinant protein expression is low yield of the product of interest. A strategy which has been shown to increase the production of baculovirus-expressed proteins is to utilise fed-batch cultures. One disadvantage of this approach is the time-consuming task of optimising the feeding strategy. Previously, a statistical optimisation routine was applied to develop a feeding strategy that increased the yield of beta-Galactosidase (beta-Gal) by 2.4-fold (Biotechnol. Bioeng, 59 (1998) 178). This involves the single addition of nutrient concentrates (amino acids, lipids. glucose and yeastolate ultrafiltrate) into Sf9 cell cultures grown in SF900II medium. In this study, it is demonstrated that this optimised fed-batch strategy developed for a high-yielding intracellular product beta-Gal could be applied successfully to a relatively low-yielding glycosylated and secreted product such as the dengue virus glycoprotein NS1. Optimised batch infections yielded 4 mug/ml of NS1 at a peak cell density of 4.2 x 10(6) cells/ml. In contrast. optimised fed-batch infections exhibited a 3-fold improvement in yield, with 12 mug ml of NS1 produced at a peak cell density of 11.3 x 10(6) cells/ml. No further improvements in yield were recorded when the feed volumes were doubled and the peak cell density was increased to 23 x 10(6) cells/ml, unless the cultures were stimulated by the addition of 4 mug/ml of 20-Hydroxyecdysone (an insect moulting hormone). In this case, the NS1 yield was increased to 20 mug/ml. which was nearly 5-fold higher than optimised batch cultures. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
To obtain a state-of-the-art benchmark potential energy surface (PES) for the archetypal oxidative addition of the methane C-H bond to the palladium atom, we have explored this PES using a hierarchical series of ab initio methods (Hartree-Fock, second-order Møller-Plesset perturbation theory, fourth-order Møller-Plesset perturbation theory with single, double and quadruple excitations, coupled cluster theory with single and double excitations (CCSD), and with triple excitations treated perturbatively [CCSD(T)]) and hybrid density functional theory using the B3LYP functional, in combination with a hierarchical series of ten Gaussian-type basis sets, up to g polarization. Relativistic effects are taken into account either through a relativistic effective core potential for palladium or through a full four-component all-electron approach. Counterpoise corrected relative energies of stationary points are converged to within 0.1-0.2 kcal/mol as a function of the basis-set size. Our best estimate of kinetic and thermodynamic parameters is -8.1 (-8.3) kcal/mol for the formation of the reactant complex, 5.8 (3.1) kcal/mol for the activation energy relative to the separate reactants, and 0.8 (-1.2) kcal/mol for the reaction energy (zero-point vibrational energy-corrected values in parentheses). This agrees well with available experimental data. Our work highlights the importance of sufficient higher angular momentum polarization functions, f and g, for correctly describing metal-d-electron correlation and, thus, for obtaining reliable relative energies. We show that standard basis sets, such as LANL2DZ+ 1f for palladium, are not sufficiently polarized for this purpose and lead to erroneous CCSD(T) results. B3LYP is associated with smaller basis set superposition errors and shows faster convergence with basis-set size but yields relative energies (in particular, a reaction barrier) that are ca. 3.5 kcal/mol higher than the corresponding CCSD(T) values