995 resultados para APRENDIZAJE AUTOMÁTICO
Resumo:
Poder clasificar de manera precisa la aplicación o programa del que provienen los flujos que conforman el tráfico de uso de Internet dentro de una red permite tanto a empresas como a organismos una útil herramienta de gestión de los recursos de sus redes, así como la posibilidad de establecer políticas de prohibición o priorización de tráfico específico. La proliferación de nuevas aplicaciones y de nuevas técnicas han dificultado el uso de valores conocidos (well-known) en puertos de aplicaciones proporcionados por la IANA (Internet Assigned Numbers Authority) para la detección de dichas aplicaciones. Las redes P2P (Peer to Peer), el uso de puertos no conocidos o aleatorios, y el enmascaramiento de tráfico de muchas aplicaciones en tráfico HTTP y HTTPS con el fin de atravesar firewalls y NATs (Network Address Translation), entre otros, crea la necesidad de nuevos métodos de detección de tráfico. El objetivo de este estudio es desarrollar una serie de prácticas que permitan realizar dicha tarea a través de técnicas que están más allá de la observación de puertos y otros valores conocidos. Existen una serie de metodologías como Deep Packet Inspection (DPI) que se basa en la búsqueda de firmas, signatures, en base a patrones creados por el contenido de los paquetes, incluido el payload, que caracterizan cada aplicación. Otras basadas en el aprendizaje automático de parámetros de los flujos, Machine Learning, que permite determinar mediante análisis estadísticos a qué aplicación pueden pertenecer dichos flujos y, por último, técnicas de carácter más heurístico basadas en la intuición o el conocimiento propio sobre tráfico de red. En concreto, se propone el uso de alguna de las técnicas anteriormente comentadas en conjunto con técnicas de minería de datos como son el Análisis de Componentes Principales (PCA por sus siglas en inglés) y Clustering de estadísticos extraídos de los flujos procedentes de ficheros de tráfico de red. Esto implicará la configuración de diversos parámetros que precisarán de un proceso iterativo de prueba y error que permita dar con una clasificación del tráfico fiable. El resultado ideal sería aquel en el que se pudiera identificar cada aplicación presente en el tráfico en un clúster distinto, o en clusters que agrupen grupos de aplicaciones de similar naturaleza. Para ello, se crearán capturas de tráfico dentro de un entorno controlado e identificando cada tráfico con su aplicación correspondiente, a continuación se extraerán los flujos de dichas capturas. Tras esto, parámetros determinados de los paquetes pertenecientes a dichos flujos serán obtenidos, como por ejemplo la fecha y hora de llagada o la longitud en octetos del paquete IP. Estos parámetros serán cargados en una base de datos MySQL y serán usados para obtener estadísticos que ayuden, en un siguiente paso, a realizar una clasificación de los flujos mediante minería de datos. Concretamente, se usarán las técnicas de PCA y clustering haciendo uso del software RapidMiner. Por último, los resultados obtenidos serán plasmados en una matriz de confusión que nos permitirá que sean valorados correctamente. ABSTRACT. Being able to classify the applications that generate the traffic flows in an Internet network allows companies and organisms to implement efficient resource management policies such as prohibition of specific applications or prioritization of certain application traffic, looking for an optimization of the available bandwidth. The proliferation of new applications and new technics in the last years has made it more difficult to use well-known values assigned by the IANA (Internet Assigned Numbers Authority), like UDP and TCP ports, to identify the traffic. Also, P2P networks and data encapsulation over HTTP and HTTPS traffic has increased the necessity to improve these traffic analysis technics. The aim of this project is to develop a number of techniques that make us able to classify the traffic with more than the simple observation of the well-known ports. There are some proposals that have been created to cover this necessity; Deep Packet Inspection (DPI) tries to find signatures in the packets reading the information contained in them, the payload, looking for patterns that can be used to characterize the applications to which that traffic belongs; Machine Learning procedures work with statistical analysis of the flows, trying to generate an automatic process that learns from those statistical parameters and calculate the likelihood of a flow pertaining to a certain application; Heuristic Techniques, finally, are based in the intuition or the knowledge of the researcher himself about the traffic being analyzed that can help him to characterize the traffic. Specifically, the use of some of the techniques previously mentioned in combination with data mining technics such as Principal Component Analysis (PCA) and Clustering (grouping) of the flows extracted from network traffic captures are proposed. An iterative process based in success and failure will be needed to configure these data mining techniques looking for a reliable traffic classification. The perfect result would be the one in which the traffic flows of each application is grouped correctly in each cluster or in clusters that contain group of applications of similar nature. To do this, network traffic captures will be created in a controlled environment in which every capture is classified and known to pertain to a specific application. Then, for each capture, all the flows will be extracted. These flows will be used to extract from them information such as date and arrival time or the IP length of the packets inside them. This information will be then loaded to a MySQL database where all the packets defining a flow will be classified and also, each flow will be assigned to its specific application. All the information obtained from the packets will be used to generate statistical parameters in order to describe each flow in the best possible way. After that, data mining techniques previously mentioned (PCA and Clustering) will be used on these parameters making use of the software RapidMiner. Finally, the results obtained from the data mining will be compared with the real classification of the flows that can be obtained from the database. A Confusion Matrix will be used for the comparison, letting us measure the veracity of the developed classification process.
Resumo:
Este trabajo presenta un clasificador de medidas de glucemia en función de las ingestas asociadas para pacientes con diabetes gestacional. Se presentan los resultados obtenidos al comparar la relevancia de diferentes atributos así como del uso de dos de los algoritmos más populares en el mundo del aprendizaje automático: las redes neuronales y los árboles de decisión. El estudio se ha realizado con los datos de 53 pacientes pertenecientes al Hospital de Sabadell y al Hospital Mutua de Terrassa obteniendo un 91,72% de precisión en el caso de la red neuronal, y un 95.92% con el árbol de decisión. La clasificación automática de medidas de glucemia permitirá a los especialistas pautar un tratamiento más acertado en base a la información obtenida directamente del glucómetro de las pacientes, contribuyendo así al desarrollo de los sistemas automáticos de ayuda a la decisión para diabetes gestacional.
Resumo:
Los medios sociales han revolucionado la manera en la que los consumidores se relacionan entre sí y con las marcas. Las opiniones publicadas en dichos medios tienen un poder de influencia en las decisiones de compra tan importante como las campañas de publicidad. En consecuencia, los profesionales del marketing cada vez dedican mayores esfuerzos e inversión a la obtención de indicadores que permitan medir el estado de salud de las marcas a partir de los contenidos digitales generados por sus consumidores. Dada la naturaleza no estructurada de los contenidos publicados en los medios sociales, la tecnología usada para procesar dichos contenidos ha menudo implementa técnicas de Inteligencia Artificial, tales como algoritmos de procesamiento de lenguaje natural, aprendizaje automático y análisis semántico. Esta tesis, contribuye al estado de la cuestión, con un modelo que permite estructurar e integrar la información publicada en medios sociales, y una serie de técnicas cuyos objetivos son la identificación de consumidores, así como la segmentación psicográfica y sociodemográfica de los mismos. La técnica de identificación de consumidores se basa en la huella digital de los dispositivos que utilizan para navegar por la Web y es tolerante a los cambios que se producen con frecuencia en dicha huella digital. Las técnicas de segmentación psicográfica descritas obtienen la posición en el embudo de compra de los consumidores y permiten clasificar las opiniones en función de una serie de atributos de marketing. Finalmente, las técnicas de segmentación sociodemográfica permiten obtener el lugar de residencia y el género de los consumidores. ABSTRACT Social media has revolutionised the way in which consumers relate to each other and with brands. The opinions published in social media have a power of influencing purchase decisions as important as advertising campaigns. Consequently, marketers are increasing efforts and investments for obtaining indicators to measure brand health from the digital content generated by consumers. Given the unstructured nature of social media contents, the technology used for processing such contents often implements Artificial Intelligence techniques, such as natural language processing, machine learning and semantic analysis algorithms. This thesis contributes to the State of the Art, with a model for structuring and integrating the information posted on social media, and a number of techniques whose objectives are the identification of consumers, as well as their socio-demographic and psychographic segmentation. The consumer identification technique is based on the fingerprint of the devices they use to surf the Web and is tolerant to the changes that occur frequently in such fingerprint. The psychographic profiling techniques described infer the position of consumer in the purchase funnel, and allow to classify the opinions based on a series of marketing attributes. Finally, the socio-demographic profiling techniques allow to obtain the residence and gender of consumers.
Resumo:
Los hipergrafos dirigidos se han empleado en problemas relacionados con lógica proposicional, bases de datos relacionales, linguística computacional y aprendizaje automático. Los hipergrafos dirigidos han sido también utilizados como alternativa a los grafos (bipartitos) dirigidos para facilitar el estudio de las interacciones entre componentes de sistemas complejos que no pueden ser fácilmente modelados usando exclusivamente relaciones binarias. En este contexto, este tipo de representación es conocida como hiper-redes. Un hipergrafo dirigido es una generalización de un grafo dirigido especialmente adecuado para la representación de relaciones de muchos a muchos. Mientras que una arista en un grafo dirigido define una relación entre dos de sus nodos, una hiperarista en un hipergrafo dirigido define una relación entre dos conjuntos de sus nodos. La conexión fuerte es una relación de equivalencia que divide el conjunto de nodos de un hipergrafo dirigido en particiones y cada partición define una clase de equivalencia conocida como componente fuertemente conexo. El estudio de los componentes fuertemente conexos de un hipergrafo dirigido puede ayudar a conseguir una mejor comprensión de la estructura de este tipo de hipergrafos cuando su tamaño es considerable. En el caso de grafo dirigidos, existen algoritmos muy eficientes para el cálculo de los componentes fuertemente conexos en grafos de gran tamaño. Gracias a estos algoritmos, se ha podido averiguar que la estructura de la WWW tiene forma de “pajarita”, donde más del 70% del los nodos están distribuidos en tres grandes conjuntos y uno de ellos es un componente fuertemente conexo. Este tipo de estructura ha sido también observada en redes complejas en otras áreas como la biología. Estudios de naturaleza similar no han podido ser realizados en hipergrafos dirigidos porque no existe algoritmos capaces de calcular los componentes fuertemente conexos de este tipo de hipergrafos. En esta tesis doctoral, hemos investigado como calcular los componentes fuertemente conexos de un hipergrafo dirigido. En concreto, hemos desarrollado dos algoritmos para este problema y hemos determinado que son correctos y cuál es su complejidad computacional. Ambos algoritmos han sido evaluados empíricamente para comparar sus tiempos de ejecución. Para la evaluación, hemos producido una selección de hipergrafos dirigidos generados de forma aleatoria inspirados en modelos muy conocidos de grafos aleatorios como Erdos-Renyi, Newman-Watts-Strogatz and Barabasi-Albert. Varias optimizaciones para ambos algoritmos han sido implementadas y analizadas en la tesis. En concreto, colapsar los componentes fuertemente conexos del grafo dirigido que se puede construir eliminando ciertas hiperaristas complejas del hipergrafo dirigido original, mejora notablemente los tiempos de ejecucion de los algoritmos para varios de los hipergrafos utilizados en la evaluación. Aparte de los ejemplos de aplicación mencionados anteriormente, los hipergrafos dirigidos han sido también empleados en el área de representación de conocimiento. En concreto, este tipo de hipergrafos se han usado para el cálculo de módulos de ontologías. Una ontología puede ser definida como un conjunto de axiomas que especifican formalmente un conjunto de símbolos y sus relaciones, mientras que un modulo puede ser entendido como un subconjunto de axiomas de la ontología que recoge todo el conocimiento que almacena la ontología sobre un conjunto especifico de símbolos y sus relaciones. En la tesis nos hemos centrado solamente en módulos que han sido calculados usando la técnica de localidad sintáctica. Debido a que las ontologías pueden ser muy grandes, el cálculo de módulos puede facilitar las tareas de re-utilización y mantenimiento de dichas ontologías. Sin embargo, analizar todos los posibles módulos de una ontología es, en general, muy costoso porque el numero de módulos crece de forma exponencial con respecto al número de símbolos y de axiomas de la ontología. Afortunadamente, los axiomas de una ontología pueden ser divididos en particiones conocidas como átomos. Cada átomo representa un conjunto máximo de axiomas que siempre aparecen juntos en un modulo. La decomposición atómica de una ontología es definida como un grafo dirigido de tal forma que cada nodo del grafo corresponde con un átomo y cada arista define una dependencia entre una pareja de átomos. En esta tesis introducimos el concepto de“axiom dependency hypergraph” que generaliza el concepto de descomposición atómica de una ontología. Un modulo en una ontología correspondería con un componente conexo en este tipo de hipergrafos y un átomo de una ontología con un componente fuertemente conexo. Hemos adaptado la implementación de nuestros algoritmos para que funcionen también con axiom dependency hypergraphs y poder de esa forma calcular los átomos de una ontología. Para demostrar la viabilidad de esta idea, hemos incorporado nuestros algoritmos en una aplicación que hemos desarrollado para la extracción de módulos y la descomposición atómica de ontologías. A la aplicación la hemos llamado HyS y hemos estudiado sus tiempos de ejecución usando una selección de ontologías muy conocidas del área biomédica, la mayoría disponibles en el portal de Internet NCBO. Los resultados de la evaluación muestran que los tiempos de ejecución de HyS son mucho mejores que las aplicaciones más rápidas conocidas. ABSTRACT Directed hypergraphs are an intuitive modelling formalism that have been used in problems related to propositional logic, relational databases, computational linguistic and machine learning. Directed hypergraphs are also presented as an alternative to directed (bipartite) graphs to facilitate the study of the interactions between components of complex systems that cannot naturally be modelled as binary relations. In this context, they are known as hyper-networks. A directed hypergraph is a generalization of a directed graph suitable for representing many-to-many relationships. While an edge in a directed graph defines a relation between two nodes of the graph, a hyperedge in a directed hypergraph defines a relation between two sets of nodes. Strong-connectivity is an equivalence relation that induces a partition of the set of nodes of a directed hypergraph into strongly-connected components. These components can be collapsed into single nodes. As result, the size of the original hypergraph can significantly be reduced if the strongly-connected components have many nodes. This approach might contribute to better understand how the nodes of a hypergraph are connected, in particular when the hypergraphs are large. In the case of directed graphs, there are efficient algorithms that can be used to compute the strongly-connected components of large graphs. For instance, it has been shown that the macroscopic structure of the World Wide Web can be represented as a “bow-tie” diagram where more than 70% of the nodes are distributed into three large sets and one of these sets is a large strongly-connected component. This particular structure has been also observed in complex networks in other fields such as, e.g., biology. Similar studies cannot be conducted in a directed hypergraph because there does not exist any algorithm for computing the strongly-connected components of the hypergraph. In this thesis, we investigate ways to compute the strongly-connected components of directed hypergraphs. We present two new algorithms and we show their correctness and computational complexity. One of these algorithms is inspired by Tarjan’s algorithm for directed graphs. The second algorithm follows a simple approach to compute the stronglyconnected components. This approach is based on the fact that two nodes of a graph that are strongly-connected can also reach the same nodes. In other words, the connected component of each node is the same. Both algorithms are empirically evaluated to compare their performances. To this end, we have produced a selection of random directed hypergraphs inspired by existent and well-known random graphs models like Erd˝os-Renyi and Newman-Watts-Strogatz. Besides the application examples that we mentioned earlier, directed hypergraphs have also been employed in the field of knowledge representation. In particular, they have been used to compute the modules of an ontology. An ontology is defined as a collection of axioms that provides a formal specification of a set of terms and their relationships; and a module is a subset of an ontology that completely captures the meaning of certain terms as defined in the ontology. In particular, we focus on the modules computed using the notion of syntactic locality. As ontologies can be very large, the computation of modules facilitates the reuse and maintenance of these ontologies. Analysing all modules of an ontology, however, is in general not feasible as the number of modules grows exponentially in the number of terms and axioms of the ontology. Nevertheless, the modules can succinctly be represented using the Atomic Decomposition of an ontology. Using this representation, an ontology can be partitioned into atoms, which are maximal sets of axioms that co-occur in every module. The Atomic Decomposition is then defined as a directed graph such that each node correspond to an atom and each edge represents a dependency relation between two atoms. In this thesis, we introduce the notion of an axiom dependency hypergraph which is a generalization of the atomic decomposition of an ontology. A module in the ontology corresponds to a connected component in the hypergraph, and the atoms of the ontology to the strongly-connected components. We apply our algorithms for directed hypergraphs to axiom dependency hypergraphs and in this manner, we compute the atoms of an ontology. To demonstrate the viability of this approach, we have implemented the algorithms in the application HyS which computes the modules of ontologies and calculate their atomic decomposition. In the thesis, we provide an experimental evaluation of HyS with a selection of large and prominent biomedical ontologies, most of which are available in the NCBO Bioportal. HyS outperforms state-of-the-art implementations in the tasks of extracting modules and computing the atomic decomposition of these ontologies.
Resumo:
La tesis que se presenta tiene como propósito la construcción automática de ontologías a partir de textos, enmarcándose en el área denominada Ontology Learning. Esta disciplina tiene como objetivo automatizar la elaboración de modelos de dominio a partir de fuentes información estructurada o no estructurada, y tuvo su origen con el comienzo del milenio, a raíz del crecimiento exponencial del volumen de información accesible en Internet. Debido a que la mayoría de información se presenta en la web en forma de texto, el aprendizaje automático de ontologías se ha centrado en el análisis de este tipo de fuente, nutriéndose a lo largo de los años de técnicas muy diversas provenientes de áreas como la Recuperación de Información, Extracción de Información, Sumarización y, en general, de áreas relacionadas con el procesamiento del lenguaje natural. La principal contribución de esta tesis consiste en que, a diferencia de la mayoría de las técnicas actuales, el método que se propone no analiza la estructura sintáctica superficial del lenguaje, sino que estudia su nivel semántico profundo. Su objetivo, por tanto, es tratar de deducir el modelo del dominio a partir de la forma con la que se articulan los significados de las oraciones en lenguaje natural. Debido a que el nivel semántico profundo es independiente de la lengua, el método permitirá operar en escenarios multilingües, en los que es necesario combinar información proveniente de textos en diferentes idiomas. Para acceder a este nivel del lenguaje, el método utiliza el modelo de las interlinguas. Estos formalismos, provenientes del área de la traducción automática, permiten representar el significado de las oraciones de forma independiente de la lengua. Se utilizará en concreto UNL (Universal Networking Language), considerado como la única interlingua de propósito general que está normalizada. La aproximación utilizada en esta tesis supone la continuación de trabajos previos realizados tanto por su autor como por el equipo de investigación del que forma parte, en los que se estudió cómo utilizar el modelo de las interlinguas en las áreas de extracción y recuperación de información multilingüe. Básicamente, el procedimiento definido en el método trata de identificar, en la representación UNL de los textos, ciertas regularidades que permiten deducir las piezas de la ontología del dominio. Debido a que UNL es un formalismo basado en redes semánticas, estas regularidades se presentan en forma de grafos, generalizándose en estructuras denominadas patrones lingüísticos. Por otra parte, UNL aún conserva ciertos mecanismos de cohesión del discurso procedentes de los lenguajes naturales, como el fenómeno de la anáfora. Con el fin de aumentar la efectividad en la comprensión de las expresiones, el método provee, como otra contribución relevante, la definición de un algoritmo para la resolución de la anáfora pronominal circunscrita al modelo de la interlingua, limitada al caso de pronombres personales de tercera persona cuando su antecedente es un nombre propio. El método propuesto se sustenta en la definición de un marco formal, que ha debido elaborarse adaptando ciertas definiciones provenientes de la teoría de grafos e incorporando otras nuevas, con el objetivo de ubicar las nociones de expresión UNL, patrón lingüístico y las operaciones de encaje de patrones, que son la base de los procesos del método. Tanto el marco formal como todos los procesos que define el método se han implementado con el fin de realizar la experimentación, aplicándose sobre un artículo de la colección EOLSS “Encyclopedia of Life Support Systems” de la UNESCO. ABSTRACT The purpose of this thesis is the automatic construction of ontologies from texts. This thesis is set within the area of Ontology Learning. This discipline aims to automatize domain models from structured or unstructured information sources, and had its origin with the beginning of the millennium, as a result of the exponential growth in the volume of information accessible on the Internet. Since most information is presented on the web in the form of text, the automatic ontology learning is focused on the analysis of this type of source, nourished over the years by very different techniques from areas such as Information Retrieval, Information Extraction, Summarization and, in general, by areas related to natural language processing. The main contribution of this thesis consists of, in contrast with the majority of current techniques, the fact that the method proposed does not analyze the syntactic surface structure of the language, but explores his deep semantic level. Its objective, therefore, is trying to infer the domain model from the way the meanings of the sentences are articulated in natural language. Since the deep semantic level does not depend on the language, the method will allow to operate in multilingual scenarios, where it is necessary to combine information from texts in different languages. To access to this level of the language, the method uses the interlingua model. These formalisms, coming from the area of machine translation, allow to represent the meaning of the sentences independently of the language. In this particular case, UNL (Universal Networking Language) will be used, which considered to be the only interlingua of general purpose that is standardized. The approach used in this thesis corresponds to the continuation of previous works carried out both by the author of this thesis and by the research group of which he is part, in which it is studied how to use the interlingua model in the areas of multilingual information extraction and retrieval. Basically, the procedure defined in the method tries to identify certain regularities at the UNL representation of texts that allow the deduction of the parts of the ontology of the domain. Since UNL is a formalism based on semantic networks, these regularities are presented in the form of graphs, generalizing in structures called linguistic patterns. On the other hand, UNL still preserves certain mechanisms of discourse cohesion from natural languages, such as the phenomenon of the anaphora. In order to increase the effectiveness in the understanding of expressions, the method provides, as another significant contribution, the definition of an algorithm for the resolution of pronominal anaphora limited to the model of the interlingua, in the case of third person personal pronouns when its antecedent is a proper noun. The proposed method is based on the definition of a formal framework, adapting some definitions from Graph Theory and incorporating new ones, in order to locate the notions of UNL expression and linguistic pattern, as well as the operations of pattern matching, which are the basis of the method processes. Both the formal framework and all the processes that define the method have been implemented in order to carry out the experimentation, applying on an article of the "Encyclopedia of Life Support Systems" of the UNESCO-EOLSS collection.
Resumo:
El objetivo principal de este proyecto ha sido introducir aprendizaje automático en la aplicación FleSe. FleSe es una aplicación web que permite realizar consultas borrosas sobre bases de datos nítidos. Para llevar a cabo esta función la aplicación utiliza unos criterios para definir los conceptos borrosos usados para llevar a cabo las consultas. FleSe además permite que el usuario cambie estas personalizaciones. Es aquí donde introduciremos el aprendizaje automático, de tal manera que los criterios por defecto cambien y aprendan en función de las personalizaciones que van realizando los usuarios. Los objetivos secundarios han sido familiarizarse con el desarrollo y diseño web, al igual que recordar y ampliar el conocimiento sobre lógica borrosa y el lenguaje de programación lógica Ciao-Prolog. A lo largo de la realización del proyecto y sobre todo después del estudio de los resultados se demuestra que la agrupación de los usuarios marca la diferencia con la última versión de la aplicación. Esto se basa en la siguiente idea, podemos usar un algoritmo de aprendizaje automático sobre las personalizaciones de los criterios de todos los usuarios, pero la gran diversidad de opiniones de los usuarios puede llevar al algoritmo a concluir criterios erróneos o no representativos. Para solucionar este problema agrupamos a los usuarios intentando que cada grupo tengan la misma opinión o mismo criterio sobre el concepto. Y después de haber realizado las agrupaciones usar el algoritmo de aprendizaje automático para precisar el criterio por defecto de cada grupo de usuarios. Como posibles mejoras para futuras versiones de la aplicación FleSe sería un mejor control y manejo del ejecutable plserver. Este archivo se encarga de permitir a la aplicación web usar el lenguaje de programación lógica Ciao-Prolog para llevar a cabo la lógica borrosa relacionada con las consultas. Uno de los problemas más importantes que ofrece plserver es que bloquea el hilo de ejecución al intentar cargar un archivo con errores y en caso de ocurrir repetidas veces bloquea todas las peticiones siguientes bloqueando la aplicación. Pensando en los usuarios y posibles clientes, sería también importante permitir que FleSe trabajase con bases de datos de SQL en vez de almacenar la base de datos en los archivos de Prolog. Otra posible mejora basarse en distintas características a la hora de agrupar los usuarios dependiendo de los conceptos borrosos que se van ha utilizar en las consultas. Con esto se conseguiría que para cada concepto borroso, se generasen distintos grupos de usuarios, los cuales tendrían opiniones distintas sobre el concepto en cuestión. Así se generarían criterios por defecto más precisos para cada usuario y cada concepto borroso.---ABSTRACT---The main objective of this project has been to introduce machine learning in the application FleSe. FleSe is a web application that makes fuzzy queries over databases with precise information, using defined criteria to define the fuzzy concepts used by the queries. The application allows the users to change and custom these criteria. On this point is where the machine learning would be introduced, so FleSe learn from every new user customization of the criteria in order to generate a new default value of it. The secondary objectives of this project were get familiar with web development and web design in order to understand the how the application works, as well as refresh and improve the knowledge about fuzzy logic and logic programing. During the realization of the project and after the study of the results, I realized that clustering the users in different groups makes the difference between this new version of the application and the previous. This conclusion follows the next idea, we can use an algorithm to introduce machine learning over the criteria that people have, but the problem is the diversity of opinions and judgements that exists, making impossible to generate a unique correct criteria for all the users. In order to solve this problem, before using the machine learning methods, we cluster the users in order to make groups that have the same opinion, and afterwards, use the machine learning methods to precise the default criteria of each users group. The future improvements that could be important for the next versions of FleSe will be to control better the behaviour of the plserver file, that cost many troubles at the beginning of this project and it also generate important errors in the previous version. The file plserver allows the web application to use Ciao-Prolog, a logic programming language that control and manage all the fuzzy logic. One of the main problems with plserver is that when the user uploads a file with errors, it will block the thread and when this happens multiple times it will start blocking all the requests. Oriented to the customer, would be important as well to allow FleSe to manage and work with SQL databases instead of store the data in the Prolog files. Another possible improvement would that the cluster algorithm would be based on different criteria depending on the fuzzy concepts that the selected Prolog file have. This will generate more meaningful clusters, and therefore, the default criteria offered to the users will be more precise.
Resumo:
La teoría de reconocimiento y clasificación de patrones y el aprendizaje automático son actualmente áreas de conocimiento en constante desarrollo y con aplicaciones prácticas en múltiples ámbitos de la industria. El propósito de este Proyecto de Fin de Grado es el estudio de las mismas así como la implementación de un sistema software que dé solución a un problema de clasificación de ruido impulsivo, concretamente mediante el desarrollo de un sistema de seguridad basado en la clasificación de eventos sonoros en tiempo real. La solución será integral, comprendiendo todas las fases del proceso, desde la captación de sonido hasta el etiquetado de los eventos registrados, pasando por el procesado digital de señal y la extracción de características. Para su desarrollo se han diferenciado dos partes fundamentales; una primera que comprende la interfaz de usuario y el procesado de la señal de audio donde se desarrollan las labores de monitorización y detección de ruido impulsivo y otra segunda centrada únicamente en la clasificación de los eventos sonoros detectados, definiendo una arquitectura de doble clasificador donde se determina si los eventos detectados son falsas alarmas o amenazas, etiquetándolos como de un tipo concreto en este segundo caso. Los resultados han sido satisfactorios, mostrando una fiabilidad global en el proceso de entorno al 90% a pesar de algunas limitaciones a la hora de construir la base de datos de archivos de audio, lo que prueba que un dispositivo de seguridad basado en el análisis de ruido ambiente podría incluirse en un sistema integral de alarma doméstico aumentando la protección del hogar. ABSTRACT. Pattern classification and machine learning are currently expertise areas under continuous development and also with extensive applications in many business sectors. The aim of this Final Degree Project is to study them as well as the implementation of software to carry on impulsive noise classification tasks, particularly through the development of a security system based on sound events classification. The solution will go over all process stages, from capturing sound to the labelling of the events recorded, without forgetting digital signal processing and feature extraction, everything in real time. In the development of the Project a distinction has been made between two main parts. The first one comprises the user’s interface and the audio signal processing module, where monitoring and impulsive noise detection tasks take place. The second one is focussed in sound events classification tasks, defining a double classifier architecture where it is determined whether detected events are false alarms or threats, labelling them from a concrete category in the latter case. The obtained results have been satisfactory, with an overall reliability of 90% despite some limitations when building the audio files database. This proves that a safety device based on the analysis of environmental noise could be included in a full alarm system increasing home protection standards.
Resumo:
La gran evolución a lo largo de este tiempo sobre dispositivos móviles y sus características, así como las vías de conexión de alta velocidad 3G/4G, han logrado dar un giro a los planteamientos económicos empresariales consiguiendo que se replanteen los costes de sus infraestructuras tradicionales, involucrando las nuevas tecnologías en su nueva estructura económica y consiguiendo invertir menos recursos humanos en el proceso de producción. Este proyecto propone una solución real para la empresa Madrileña Red de Gas. Mientras el proyecto de contadores inteligentes se termina de concretar y desarrollar, es necesario disponer de un método que automatice la lectura de los contadores analógicos mediante el procesamiento de una imagen digital a través de una aplicación informática que sea capaz de determinar el código de identificación del contador así como la lectura del consumo actual. Para la elaboración del método desarrollado se han utilizado conceptos propios de Visión por Computador y de Aprendizaje Automático, más específicamente tratamiento de imágenes y reconocimiento óptico de caracteres, mediante la aplicación de métodos en el ámbito de dichas disciplinas.
Resumo:
En la actualidad, existe un concepto que está cobrando especial relevancia, el cual es conocido como IoT (Internet of Things, Internet de las Cosas) [1]. En el IoT [2] se define la interconexión digital de objetos cotidianos con internet, esto significa que no sólo “los humanos” tenemos la capacidad de conectarnos a internet, sino que caminamos hacia una nueva era donde prácticamente cualquier cosa podría ser conectada a internet, desde un reloj (smartwatch), como tenemos en la actualidad, hasta una nevera, una persiana, una sartén, etc. En este proyecto se ha querido aplicar ciertas fases del IoT, para convertir una información ambiental poco sesgada, proporcionada por una pequeña estación meteorológica, en un valor adicional a la hora de tomar decisiones basadas en las variables ambientales, para determinar, según un proceso de aprendizaje automático, la sensación que una persona percibe en relación al tiempo meteorológico en un determinado momento. Para ello utilizamos una serie de sensores que se encargan de darnos la información ambiental necesaria (como la temperatura, humedad y presión atmosférica) una fuente de procesamiento como puede ser un micro-controlador, para después poder manejarla y procesarla en la nube, de forma remota, adquiriendo así el valor añadido que se espera en el IoT. Además, en este proyecto se aplican técnicas de Inteligencia Artificial para ayudar al usuario en esa toma de decisiones, mediante un proceso de entrenamiento previo, que permite obtener información relevante para aplicarla posteriormente en el contexto meteorológico mencionado. Para manejar todos estos conceptos y elementos, se hace uso de servicios Web, bases de datos, procesamiento y aprendizaje automático, integrando todos los servicios en una misma plataforma que facilite la comunicación de todos los elementos involucrados.
Resumo:
El análisis de textos de la Web 2.0 es un tema de investigación relevante hoy en día. Sin embargo, son muchos los problemas que se plantean a la hora de utilizar las herramientas actuales en este tipo de textos. Para ser capaces de medir estas dificultades primero necesitamos conocer los diferentes registros o grados de informalidad que podemos encontrar. Por ello, en este trabajo intentaremos caracterizar niveles de informalidad para textos en inglés en la Web 2.0 mediante técnicas de aprendizaje automático no supervisado, obteniendo resultados del 68 % en F1.
Resumo:
IARG-AnCora tiene como objetivo la anotación con papeles temáticos de los argumentos implícitos de las nominalizaciones deverbales en el corpus AnCora. Estos corpus servirán de base para los sistemas de etiquetado automático de roles semánticos basados en técnicas de aprendizaje automático. Los analizadores semánticos son componentes básicos en las aplicaciones actuales de las tecnologías del lenguaje, en las que se quiere potenciar una comprensión más profunda del texto para realizar inferencias de más alto nivel y obtener así mejoras cualitativas en los resultados.
Resumo:
El foco geográfico de un documento identifica el lugar o lugares en los que se centra el contenido del texto. En este trabajo se presenta una aproximación basada en corpus para la detección del foco geográfico en el texto. Frente a otras aproximaciones que se centran en el uso de información puramente geográfica para la detección del foco, nuestra propuesta emplea toda la información textual existente en los documentos del corpus de trabajo, partiendo de la hipótesis de que la aparición de determinados personajes, eventos, fechas e incluso términos comunes, pueden resultar fundamentales para esta tarea. Para validar nuestra hipótesis, se ha realizado un estudio sobre un corpus de noticias geolocalizadas que tuvieron lugar entre los años 2008 y 2011. Esta distribución temporal nos ha permitido, además, analizar la evolución del rendimiento del clasificador y de los términos más representativos de diferentes localidades a lo largo del tiempo.
Resumo:
El campo de procesamiento de lenguaje natural (PLN), ha tenido un gran crecimiento en los últimos años; sus áreas de investigación incluyen: recuperación y extracción de información, minería de datos, traducción automática, sistemas de búsquedas de respuestas, generación de resúmenes automáticos, análisis de sentimientos, entre otras. En este artículo se presentan conceptos y algunas herramientas con el fin de contribuir al entendimiento del procesamiento de texto con técnicas de PLN, con el propósito de extraer información relevante que pueda ser usada en un gran rango de aplicaciones. Se pueden desarrollar clasificadores automáticos que permitan categorizar documentos y recomendar etiquetas; estos clasificadores deben ser independientes de la plataforma, fácilmente personalizables para poder ser integrados en diferentes proyectos y que sean capaces de aprender a partir de ejemplos. En el presente artículo se introducen estos algoritmos de clasificación, se analizan algunas herramientas de código abierto disponibles actualmente para llevar a cabo estas tareas y se comparan diversas implementaciones utilizando la métrica F en la evaluación de los clasificadores.
Resumo:
Hospitals attached to the Spanish Ministry of Health are currently using the International Classification of Diseases 9 Clinical Modification (ICD9-CM) to classify health discharge records. Nowadays, this work is manually done by experts. This paper tackles the automatic classification of real Discharge Records in Spanish following the ICD9-CM standard. The challenge is that the Discharge Records are written in spontaneous language. We explore several machine learning techniques to deal with the classification problem. Random Forest resulted in the most competitive one, achieving an F-measure of 0.876.
Resumo:
Este artículo presenta la aplicación y resultados obtenidos de la investigación en técnicas de procesamiento de lenguaje natural y tecnología semántica en Brand Rain y Anpro21. Se exponen todos los proyectos relacionados con las temáticas antes mencionadas y se presenta la aplicación y ventajas de la transferencia de la investigación y nuevas tecnologías desarrolladas a la herramienta de monitorización y cálculo de reputación Brand Rain.