Clasificación supervisada de las neuronas de la base de datos NeuroMorpho


Autoria(s): Maraver Abad, Patricia
Contribuinte(s)

Bielza Lozoya, Concepción

Larrañaga Múgica, Pedro

Data(s)

01/01/2015

Resumo

Partimos de una colección de neuronas digitalizadas que descargaremos de la mayor base de datos libre y accesible vía web que existe actualmente llamada NeuroMorpho (Ascoli et al. (2007)) y ubicada en http://neuromorpho.org. A partir de los atributos que extraeremos de las células con el software L-Measure clasificaremos las distintas neuronas por especies, género, tipo de célula, región del cerebro y edad utilizando los algoritmos de aprendizaje automático disponibles en el software Weka. Por último estudiaremos los resultados obtenidos. En el capítulo de resultados obtenidos se describen los datos presentados por los distintos investigadores que han realizado los estudios manualmente, tratando las neuronas una a una y los compararemos con los que hemos obtenido computacionalmente. Veremos las diferencias y similitudes, y podremos verificar la robustez de nuestros resultados. Gracias a la capacidad actual de los ordenadores y a los avances en inteligencia artificial descubriremos atributos para diferenciar clases que no se conocían por las limitaciones humanas, además de poder ratificar aquellos que ya se utilizan.

Formato

application/pdf

Identificador

http://oa.upm.es/34805/

Idioma(s)

spa

Publicador

E.T.S. de Ingenieros Informáticos (UPM)

Relação

http://oa.upm.es/34805/1/TFM_PATRICIA_MARAVER_ABAD.pdf

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Palavras-Chave #Informática
Tipo

Tesis de Master

info:eu-repo/semantics/masterThesis

PeerReviewed