985 resultados para ALMOST-PERIODIC SOLUTIONS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let (X, parallel to . parallel to) be a Banach space and omega is an element of R. A bounded function u is an element of C([0, infinity); X) is called S-asymptotically omega-periodic if lim(t ->infinity)[u(t + omega) - u(t)] = 0. In this paper, we establish conditions under which an S-asymptotically omega-periodic function is asymptotically omega-periodic and we discuss the existence of S-asymptotically omega-periodic and asymptotically omega-periodic solutions for an abstract integral equation. Some applications to partial differential equations and partial integro-differential equations are considered. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate parallel algorithms for the solution of the Navier–Stokes equations in space-time. For periodic solutions, the discretized problem can be written as a large non-linear system of equations. This system of equations is solved by a Newton iteration. The Newton correction is computed using a preconditioned GMRES solver. The parallel performance of the algorithm is illustrated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical explorations show how the known periodic solutions of the Hill problem are modified in the case of the attitude-orbit coupling that may occur for large satellite structures. We focus on the case in which the elongation is the dominant satellite’s characteristic and find that a rotating structure may remain with its largest dimension in a plane parallel to the plane of the primaries. In this case, the effect produced by the non-negligible physical length is dynamically equivalent to the perturbation produced by an oblate central body on a mass-point satellite. Based on this, it is demonstrated that the attitude-orbital coupling of a long enough body may change the dynamical characteristics of a periodic orbit about the collinear Lagrangian points.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Numerical explorations show how the known periodic solutions of the Hill problem are modified in the case of the attitude-orbit coupling that may occur for large satellite structures. We focus on the case in which the elongation is the dominant satellite?s characteristic and find that a rotating structure may remain with its largest dimension in a plane parallel to the plane of the primaries. In this case, the effect produced by the non-negligible physical dimension is dynamically equivalent to the perturbation produced by an oblate central body on a masspoint satellite. Based on this, it is demonstrated that the attitude-orbital coupling of a long enough body may change the dynamical characteristics of a periodic orbit about the collinear Lagrangian points.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper periodic time-dependent Lotka-Volterra systems are considered. It is shown that such a system has positive periodic solutions. It is done without constructive conditions over the period and the parameters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many interesting phenomena have been observed in layers of granular materials subjected to vertical oscillations; these include the formation of a variety of standing wave patterns, and the occurrence of isolated features called oscillons, which alternately form conical heaps and craters oscillating at one-half of the forcing frequency. No continuum-based explanation of these phenomena has previously been proposed. We apply a continuum theory, termed the double-shearing theory, which has had success in analyzing various problems in the flow of granular materials, to the problem of a layer of granular material on a vertically vibrating rigid base undergoing vertical oscillations in plane strain. There exists a trivial solution in which the layer moves as a rigid body. By investigating linear perturbations of this solution, we find that at certain amplitudes and frequencies this trivial solution can bifurcate. The time dependence of the perturbed solution is governed by Mathieu’s equation, which allows stable, unstable and periodic solutions, and the observed period-doubling behaviour. Several solutions for the spatial velocity distribution are obtained; these include one in which the surface undergoes vertical velocities that have sinusoidal dependence on the horizontal space dimension, which corresponds to the formation of striped standing waves, and is one of the observed patterns. An alternative continuum theory of granular material mechanics, in which the principal axes of stress and rate-of-deformation are coincident, is shown to be incapable of giving rise to similar instabilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this contribution, a stability analysis for a dynamic voltage restorer (DVR) connected to a weak ac system containing a dynamic load is presented using continuation techniques and bifurcation theory. The system dynamics are explored through the continuation of periodic solutions of the associated dynamic equations. The switching process in the DVR converter is taken into account to trace the stability regions through a suitable mathematical representation of the DVR converter. The stability regions in the Thevenin equivalent plane are computed. In addition, the stability regions in the control gains space, as well as the contour lines for different Floquet multipliers, are computed. Besides, the DVR converter model employed in this contribution avoids the necessity of developing very complicated iterative map approaches as in the conventional bifurcation analysis of converters. The continuation method and the DVR model can take into account dynamics and nonlinear loads and any network topology since the analysis is carried out directly from the state space equations. The bifurcation approach is shown to be both computationally efficient and robust, since it eliminates the need for numerically critical and long-lasting transient simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper presents a detailed analysis on the collective dynamics and delayed state feedback control of a three-dimensional delayed small-world network. The trivial equilibrium of the model is first investigated, showing that the uncontrolled model exhibits complicated unbounded behavior. Then three control strategies, namely a position feedback control, a velocity feedback control, and a hybrid control combined velocity with acceleration feedback, are then introduced to stabilize this unstable system. It is shown in these three control schemes that only the hybrid control can easily stabilize the 3-D network system. And with properly chosen delay and gain in the delayed feedback path, the hybrid controlled model may have stable equilibrium, or periodic solutions resulting from the Hopf bifurcation, or complex stranger attractor from the period-doubling bifurcation. Moreover, the direction of Hopf bifurcation and stability of the bifurcation periodic solutions are analyzed. The results are further extended to any "d" dimensional network. It shows that to stabilize a "d" dimensional delayed small-world network, at least a "d – 1" order completed differential feedback is needed. This work provides a constructive suggestion for the high dimensional delayed systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We apply the method of multiple scales (MMS) to a well known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the time scale of typical cutting tool oscillations. The MMS upto second order for such systems has been developed recently, and is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy. The main advantage of the present analysis is that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space. Lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS. Finally, the strong sensitivity of the dynamics to small changes in parameter values is seen clearly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gravity critical speeds of rotors have hitherto been studied using linear analysis, and ascribed to rotor stiffness asymmetry. Here, we study an idealized asymmetric nonlinear overhung rotor model of Crandall and Brosens, spinning close to its gravity critical speed.Nonlinearities arise from finite displacements, and the rotor's staticlateral deflection under gravity is taken as small. Assuming small asymmetry and damping, slow modulations of whirl amplitudes are studied using the method of multiple scales. Inertia asymmetry appears only at second order. More interestingly, even without stiffness asymmetry, the gravity-induced resonance survives through geometric nonlinearities. The gravity resonant forcing does not influence the resonant mode at leading order, unlike the typical resonant oscillations. Nevertheless,the usual phenomena of resonances, namely saddle-node bifurcations, jump phenomena and hysteresis, are all observed. An unanticipated periodic solution branch is found. In the three-dimensional space oftwo modal coefficients and a detuning parameter, the full set of periodic solutions is found to be an imperfect version of three mutually intersecting curves: a straight line,a parabola and an ellipse.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the dynamics of peeling of an adhesive tape subjected to a constant pull speed. Due to the constraint between the pull force, peel angle and the peel force, the equations of motion derived earlier fall into the category of differential-algebraic equations (DAE) requiring an appropriate algorithm for its numerical solution. By including the kinetic energy arising from the stretched part of the tape in the Lagrangian, we derive equations of motion that support stick-slip jumps as a natural consequence of the inherent dynamics itself, thus circumventing the need to use any special algorithm. In the low mass limit, these equations reproduce solutions obtained using a differential-algebraic algorithm introduced for the earlier singular equations. We find that mass has a strong influence on the dynamics of the model rendering periodic solutions to chaotic and vice versa. Apart from the rich dynamics, the model reproduces several qualitative features of the different waveforms of the peel force function as also the decreasing nature of force drop magnitudes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the study of a third-order mechanical oscillator is presented by demonstrating its equivalence to the well-known R.C. multivibrator with two additional reactive elements. The conditions for the oscillator's possession of periodic solutions are presented. It is also shown that under certain conditions, the study of the given third-order autonomous system can be reduced to the study of an equivalent second-order, non-autonomous system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an analysis of solar radiation pressure induced coupled librations of gravity stabilized cylindrical spacecraft with a special reference to geostationary communication satellites. The Lagrangian approach is used to obtain the corresponding equations of motion. The solar induced torques are assumed to be free of librational angles and are represented by their Fourier expansion. The response and periodic solutions are obtained through linear and nonlinear analyses, using the method of harmonic balance in the latter case. The stability conditions are obtained using Routh-Hurwitz criteria. To establish the ranges of validity the analytic response is compared with the numerical solution. Finally, values of the system parameters are suggested to make the satellite behave as desired. Among these is a possible approach to subdue the solar induced roll resonance. It is felt that the approximate analysis presented here should significantly reduce the computational efforts involved in the design and stability analysis of the systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We apply the method of multiple scales (MMS) to a well-known model of regenerative cutting vibrations in the large delay regime. By ``large'' we mean the delay is much larger than the timescale of typical cutting tool oscillations. The MMS up to second order, recently developed for such systems, is applied here to study tool dynamics in the large delay regime. The second order analysis is found to be much more accurate than the first order analysis. Numerical integration of the MMS slow flow is much faster than for the original equation, yet shows excellent accuracy in that plotted solutions of moderate amplitudes are visually near-indistinguishable. The advantages of the present analysis are that infinite dimensional dynamics is retained in the slow flow, while the more usual center manifold reduction gives a planar phase space; lower-dimensional dynamical features, such as Hopf bifurcations and families of periodic solutions, are also captured by the MMS; the strong sensitivity of the slow modulation dynamics to small changes in parameter values, peculiar to such systems with large delays, is seen clearly; and though certain parameters are treated as small (or, reciprocally, large), the analysis is not restricted to infinitesimal distances from the Hopf bifurcation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A class of self-propagating linear and nonlinear travelling wave solutions for compressible rotating fluid is studied using both numerical and analytical techiques. It is shown that, in general, a three dimensional linear wave is not periodic. However, for some range of wave numbers depending on rotation, horizontally propagating waves are periodic. When the rotation ohgr is equal to $$\sqrt {(\gamma - 1)/(4\gamma )}$$ , all horizontal waves are periodic. Here, gamma is the ratio of specific heats. The analytical study is based on phase space analysis. It reveals that the quasi-simple waves are periodic only in some plane, even when the propagation is horizontal, in contrast to the case of non-rotating flows for which there is a single parameter family of periodic solutions provided the waves propagate horizontally. A classification of the singular points of the governing differential equations for quasi-simple waves is also appended.