980 resultados para ALCOHOL EXPOSURE
Resumo:
Chronic alcohol exposure induces lasting behavioral changes, tolerance, and dependence. This results, at least partially, from neural adaptations at a cellular level. Previous genome-wide gene expression studies using pooled human brain samples showed that alcohol abuse causes widespread changes in the pattern of gene expression in the frontal and motor cortices of human brain. Because these studies used pooled samples, they could not determine variability between different individuals. In the present study, we profiled gene expression levels of 14 postmortem human brains (seven controls and seven alcoholic cases) using cDNA microarrays (46 448 clones per array). Both frontal cortex and motor cortex brain regions were studied. The list of genes differentially expressed confirms and extends previous studies of alcohol responsive genes. Genes identified as differentially expressed in two brain regions fell generally into similar functional groups, including metabolism, immune response, cell survival, cell communication, signal transduction and energy production. Importantly, hierarchical clustering of differentially expressed genes accurately distinguished between control and alcoholic cases, particularly in the frontal cortex.
Resumo:
Alcohol dependence may result from neuroadaptation involving alteration of gene expression after long-term alcohol exposure. The systematic study of gene expression profiles of the human alcoholic brain was initiated using the method of polymerase chain reaction (PCR)-differential display and was followed by DNA microarray. To date, more than 100 alcohol-responsive genes have been identified from the frontal cortex, motor cortex and nucleus accumbens of the human brain. These genes have a wide range of functions in the brain and indicate diverse actions of alcohol on neuronal function. This review discusses the current information on the genetic basis of alcoholism and the induction and characterization of these alcohol-responsive genes.
Resumo:
Aims: Previous immunohistochemical studies have shown that the post-translational formation of aldehyde-protein adducts may be an important process in the aetiology of alcohol-induced muscle disease. However, other studies have shown that in a variety of tissues, alcohol induces the formation of various other adduct species, including hybrid acetaldehyde-malondialdehyde-protein adducts and adducts with free radicals themselves, e.g. hydroxyethyl radical (HER)-protein adducts. Furthermore, acetaldehyde-protein adducts may be formed in reducing or non-reducing environments resulting in distinct molecular entities, each with unique features of stability and immunogenicity. Some in vitro studies have also suggested that unreduced adducts may be converted to reduced adducts in situ. Our objective was to test the hypothesis that in muscle a variety of different adduct species are formed after acute alcohol exposure and that unreduced adducts predominate. Methods: Rabbit polyclonal antibodies were raised against unreduced and reduced aldehydes and the HER-protein adducts. These were used to assay different adduct species in soleus (type I fibre-predominant) and plantaris (type II fibre-predominant) muscles and liver in four groups of rats administered acutely with either [A] saline (control); [B] cyanamide (an aldehyde dehydrogenase inhibitor); [C] ethanol; [D] cyanamide+ethanol. Results: Amounts of unreduced acetaldehyde and malondialdehyde adducts were increased in both muscles of alcohol-dosed rats. However there was no increase in the amounts of reduced acetaldehyde adducts, as detected by both the rabbit polyclonal antibody and the RT1.1 mouse monoclonal antibody. Furthermore, there was no detectable increase in malondialdehyde-acetaldehyde and HER-protein adducts. Similar results were obtained in the liver. Conclusions: Adducts formed in skeletal muscle and liver of rats exposed acutely to ethanol are mainly unreduced acetaldehyde and malondialdehyde species.
Resumo:
Background - Limiting the amount of alcohol in children's medicines is advisable but as alcohol is the second most common solvent used in liquid preparations, paediatric patients with increased medication intake may be exposed to a considerable alcohol intake. Few medicines are specifically designed for children in Paediatric Intensive Care (PICU), and therefore adult formulations are frequently administered, with high medication use further exposing a PICU patient to undesired alcohol intake. Aims - This small pilot study aimed to examiine the intake of a sample of PICU patients, highlight common medicines used on PICU containing alcohol, provide alternatives where possible and where alternatives are not possible, provide the prescriber with a list of the higher alcohol containing medicines. Method - A retrospective medication chart review was undertaken as a two point snap shot. Data collected included age, weight, medications prescribed and the formulations used at time of the study. The patients' sedation score was recorded. The electronic medicine compendium (EMC) was consulted for any ethanol content for the commercially available products. The manufacturer was contacted for ethanol content of all ‘specials’ and any commercial products found to contain ethanol from the EMC. The PICU patient's daily intake of ethanol was calculated. The calculation was converted to an adult equivalent alcohol unit intake and although this method of conversion is crude and does not take physiological differences of adult and children into account, it was done in order to provide the clinician with commonly used terminology in deciding the risk to the patient. Results - Twenty-eight patients were prescribed a range of 69 different medications. Of the 69 medicines, 12 products were found to contain ethanol. Patient ages ranged from a 26 week premature infant to 15 years old, weights ranges from 0.7 kg to 45 kg. Only 2 out of the 28 patients did not receive ethanol containing medications, and most patients were prescribed at least two medicines containing ethanol. Daily ethanol intake uncorrected for weight ranged from 0.006 ml to 2.18 ml (median 0.26 ml). Converting this to adult units per week, alcohol intake ranged from 0.07 to 15.2 units (median 1.4 units). The two patients receiving above 15 units/week adult equivalent were prescribed an oral morphine weaning regimen, therefore the high alcohol exposure was short term. The most common drugs prescribed containing alcohol were found to be nystatin, ranitidine, furosemide and morphine. No commercially available alcohol-free oral liquid preparations were found for ranitidine, furosemide or morphine at the time of the study. Correlation of the sedation score against ethanol intake was difficult to analyse as most patients were actively sedated. Conclusions - Polypharmacy in PICU patients increases the exposure to alcohol. Some commercially available medicines provide excessive ethanol intake, providing the clinician with ethical, potentially economical dilemmas of prescribing an unlicensed medicine to minimise ethanol exposure. Further research is required to evaluate the scope of the problem, effects of exposure and provision of alcohol free formulations.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Purpose: To evaluate the anti-apoptotic effect of phyllanthin on alcohol-induced liver cell death in HepG2 cells alone and in co-culture with human monocytic (THP-1) differentiated macrophage cells. Methods: Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were pretreated with 1, 5 and 10 μM phyllanthin for 24 h followed by 1300 mM alcohol for HepG2 cells and 2000 mM alcohol for the co-cultured cells. Thereafter, intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) changes, apoptotic cell death and caspase-3/7 activities were assessed. Results: Alcohol exposure significantly increased intracellular ROS generation (p < 0.001), decreased MMP changes (p < 0.001), increased the number of apoptotic and necrotic cells (p < 0.001) and also induced higher caspase-3/7 activity (p < 0.001) in the co-culture with THP-1 differentiated macrophage cells than in HepG2 cells alone. Pretreatment of HepG2 cells and co-cultured cells with phyllanthin for 24 h prior to alcohol exposure significantly decreased intracellular production of ROS (p < 0.001) and also increased the change in MMP (p < 0.001) as well as caused a decrease in the number of apoptotic and necrotic cells (p < 0.001), but inhibited caspase-3/7 activity (p < 0.001). Conclusion: The results indicate that phyllanthin treatment may have a significant therapeutic effect on alcohol-related liver diseases.
Resumo:
We have previously shown that exposing rats to a relatively high dose of ethanol during early postnatal life resulted in a deficit in spatial learning ability. This ability is controlled, at least in part, by the hippocampal formation. The purpose of the present study was to determine whether exposure of rats to ethanol during early postnatal life affected the number of specific neurons in the hippocampus. Wistar rats were exposed to a relatively high daily dose of ethanol between postnatal days 10 and 15 by placing them for 3 h each day in a chamber containing ethanol vapor. The blood ethanol concentration was about 430 mg/dl at the end of the exposure period. Groups of ethanol-treated (ET) rats, separation controls (SC), and mother-reared controls (MRC) were anesthetized and killed at 16 days of age by perfusion with phosphate-buffered glutaraldehyde (2.5%). The Cavalieri principle was used to determine the volume of various subdivisions of the hippocampal formation (CA1, CA2+CA3, hilus, and granule cell layer), and the physical disector method was used to estimate the numerical densities of neurons within each subdivision. The total number of neurons was calculated by multiplying estimates of the numerical density with the volume. There were, on average, about 441,000 granule cells in the granule cell layer and 153,000 to 177,000 pyramidal cells in both the CA1 and CA2+CA3 regions in all three treatment groups. In the hilus region, ET rats had about 27,000 neuronal cells. This was significantly fewer than the average of 38,000 such neurons estimated to be present in both MRC and SC animals. Thus, neurons in the hilus region may be particularly vulnerable to the effects of a high dose of ethanol exposure during early postnatal life. (C) 2000 Wiley-Liss, Inc.
Resumo:
Rats exposed to a relatively high dose (7.5 g/kg body weight) of alcohol on either the fifth or tenth postnatal day of age have been reported to have long-lasting deficits in spatial learning ability as tested on the Morris water maze task. The question arises concerning the level of alcohol required to achieve this effect. Wistar rats were exposed to either 2, 4 or 6 g/kg body weight of ethanol administered as a 10% solution. This ethanol was given over an 8-h period on the fifth postnatal day of age by means of an intragastric cannula. Gastrostomy controls received a 5% sucrose solution substituted isocalorically for the ethanol. Another set of pups raised by their mother were used as suckle controls. All surgical procedures were carried out under halothane vapour anaesthesia. After the artificial feeding regimes all pups were returned to lactating dams and weaned at 21 days of age. The spatial learning ability of these rats was tested in the Morris water maze when they were between 61-64 days of age. This task requires the rats to swim in a pool containing water made opaque and locate and climb onto a submerged platform. The time taken to accomplish this is known as the escape latency. Each rat was subjected to 24 trials over 3 days of the test period. Statistical analysis of the escape latency data revealed that the rats given 6 g/kg body weight of ethanol had significant deficits in their spatial learning ability compared with their control groups. However, there was no significant difference in spatial learning ability for the rats given either 2 or 4 g/kg body weight of ethanol compared with their respective gastrostomy or suckle control animals. We concluded that ethanol exposure greater than 4 g/kg over an 8-h period to 5-day-old rats is required for them to develop long-term deficits in spatial learning behaviour. (C) 1998 Elsevier Science Inc.
Resumo:
Although cigarette smoking and alcohol consumption increase risk for head and neck cancers, there have been few attempts to model risks quantitatively and to formally evaluate cancer site-specific risks. The authors pooled data from 15 case-control studies and modeled the excess odds ratio (EOR) to assess risk by total exposure (pack-years and drink-years) and its modification by exposure rate (cigarettes/day and drinks/day). The smoking analysis included 1,761 laryngeal, 2,453 pharyngeal, and 1,990 oral cavity cancers, and the alcohol analysis included 2,551 laryngeal, 3,693 pharyngeal, and 3,116 oval cavity cancers, with over 8,000 controls. Above 15 cigarettes/day, the EOR/pack-year decreased with increasing cigarettes/day, suggesting that greater cigarettes/day for a shorter duration was less deleterious than fewer cigarettes/day for a longer duration. Estimates of EOR/pack-year were homogeneous across sites, while the effects of cigarettes/day varied, indicating that the greater laryngeal cancer risk derived from differential cigarettes/day effects and not pack-years. EOR/drink-year estimates increased through 10 drinks/day, suggesting that greater drinks/day for a shorter duration was more deleterious than fewer drinks/day for a longer duration. Above 10 drinks/day, data were limited. EOR/drink-year estimates varied by site, while drinks/day effects were homogeneous, indicating that the greater pharyngeal/oral cavity cancer risk with alcohol consumption derived from the differential effects of drink-years and not drinks/day.
Resumo:
Negative mood states are credited to exacerbate excessive drinking among problem drinkers. We developed an emotional cue exposure treatment procedure and applied it to three problem drinkers who have a history of drinking excessively under stressful emotional states. All three preferred a controlled drinking goal and received an average of seven sessions of treatment. Treatment comprised of providing alcohol (priming doses), followed by negative mood induction and response prevention of further drinking. Reductions were observed in the quantity and frequency of drinking, the Beck Depression Inventory, the Severity of Alcohol Dependence Questionnaire (Form C) and the Impaired Control Questionnaire scores. Increments were observed in self-efficacy to face different difficult situations. These gains were maintained at the 6-month follow-up. Providing alcohol to problem drinkers in treatment, followed by negative mood induction and response prevention, is clinically feasible and may benefit clients who drink under a variety of stressful mood states. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
El Trastorno por Déficit de Atención con Hiperactividad (ADHD) es un síndrome conductual de origen orgánico, que se manifiesta principalmente en niños. Está caracterizado por distracción moderada a severa, períodos de atención breve, hiperactividad, inestabilidad emocional e impulsividad. Los tratamientos se basan "paradójicamente" en psicoestimulantes. Las sustancias mas empleadas son metilfenidato y anfetamina. La sintomatología indica un mal funcionamiento en los circuitos dopaminérgicos que sería el resultado de factores genéticos como ambientales, ya que es común encontrar ADHD en niños expuestos prenatalmente al alcohol. Los modelos animales son importantes para estudiar patologías de etiología desconocida, en este sentido, estudios de nuestro laboratorio indican que ratones deficientes en p35 son hiperactivos y responden paradojalmente a psicoestimulantes. Cdk5/p35 participa en el desarrollo neuronal, liberación de vesículas, señales dopaminérgicas, etc. Además resultados preliminares indican que la experiencia prenatal con una dosis etílica moderada durante la gestación tardía, es suficiente para incrementar los patrones de actividad locomotora, semejantes a los descriptos en los modelos animales de ADHD. De acuerdo a estas consideraciones hipotetizamos que la exposición etílica prenatal a dosis moderadas y durante un periodo acotado de la gestación tardía, resulta en un patrón conductual similar al descripto en modelos de ADHD. Asimismo, drogas psicoestimulantes pueden revertir dichos efectos. Por otra parte, proponemos que estas alteraciones son consecuencia de los efectos ocasionados por el insulto etílico sobre el equilibrio en el funcionamiento del sistema de neurotransmisión dopaminérgio mesolímbico/cortical. Teniendo en cuenta que la etiología del ADHD aun no se conoce, el desarrollo de modelos animales, que recapitulen características clínicas de este trastorno, constituye una herramienta muy poderosa para el estudio de los mecanismos celulares y moleculares que subyacen a este síndrome, por lo tanto, en este proyecto nos proponemos obtener evidencias acerca de las alteraciones originadas a partir de efectos deletéreos de la exposición etílica prenatal, que recapitulan el desarrollo de fenotipos conductuales y bioquímicos descriptos en modelos para ADHD. Específicamente nos proponemos determinar, por medio de experimentos conductuales, si la exposición a distintas dosis moderadas de alcohol durante un periodo acotado de la gestación tardía, son suficientes para generar alteraciones conductuales características de ADHD y establecer si metilfenidato y anfetamina, son capaces de revertirlas. Evaluar, mediante métodos bioquímicos, si este modelo involucra cambios en algunos de los componentes claves de la neurotransmisión dopaminérgica, tales como niveles de dopamina y sus metabolitos, niveles de expresión de tirosina-hidroxilasa, de receptores y transportador de dopamina, del complejo cdk5/p35, entre otros. Esperamos recapitular características análogas a las observadas en sujetos diagnosticados con ADHD y que el tratamiento con psicoestimulantes re-establezca los niveles de conducta normales. Mediante ensayos bioquímicos, esperamos encontrar mayores niveles de dopamina en tejido estriatal, acompañados con un aumento en los niveles de sus metabolitos y mediante western blot y ensayos de actividad esperamos encontrar mayor nivel de expresión en D1, menor de DAT y alteraciones en la normal actividad y expresión de cdk5/p35, que podrían explicar los resultados comportamentales esperados. Dada la alta prevalencia de ADHD y que estos jóvenes pacientes son medicados con psicoestimulantes, junto con la poca información sobre las respuestas neuroadaptativas del cerebro inmaduro, es importante investigar los mecanismos que subyacen las alteraciones neurofisiológicas de este trastorno. Estos abordajes experimentales resultan centrales para el desarrollo de terapias mas eficientes para el tratamiento de este síndrome.
Resumo:
Limiting the Exposure of Young People to Alcohol Advertising: 4th Annual report of the Alcohol Marketing Communications Monitoring Body Click here to download PDF 156KB
Resumo:
Limiting the Exposure of Young People to Alcohol Advertising: 5th Annual report of the Alcohol Marketing Communications Monitoring Body Click here to download PDF 173KB
Resumo:
Our task as a Monitoring Body is to oversee the implementation of and adherence to Voluntary Codes of Practice to limit the exposure of young people under the age of 18 years to alcohol advertising. As this Sixth Annual Report shows there was overall compliance in 2011 by television, radio, cinema, outdoor advertisers and newspapers and magazines with the obligations set down in the Codes. Click here to download PDF 2.03MB
Resumo:
The task of the Monitoring Body is to oversee the implementation of and adherence to Voluntary Codes of Practice to limit the exposure of young people, under the age of 18 years, to alcohol advertising. The Monitoring Body is chaired by Mr Peter Cassells Download the seventh annual report here